

Programa de **ELEMENTOS DE MÁQUINAS**

1. NOMBRE DE LA UNIDAD CURRICULAR

Elementos de Máquinas

2. CRÉDITOS

10 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

Impartir conceptos de diseño de elementos de máquinas, lo cual comprende la descripción y el cálculo de los mismos para que cumplan los requisitos especificados de acuerdo a su función

El alumno será capaz de describir los elementos de máquinas, distinguirlos, identificar sus características principales, señalar sus usos y mediante el cálculo llevar a cabo el diseño de los mismos.

4. METODOLOGÍA DE ENSEÑANZA

El curso cuenta con una carga de 5 horas semanales, de las cuales 2 son teóricas y 3 prácticas (ejercicios y problemas de aplicación). El alumno deberá dedicar 5 horas semanales extra aula a la compresión de los conceptos teóricos adquiridos, a la resolución de ejercicios prácticos y aplicaciones y a la elaboración de un proyecto de diseño de un componente mecánico que deberá entregar como parte del curso.

5. TEMARIO

- 1. Tornillos: Tornillos de sujeción. Tornillos de transmisión de potencia.
- 2. <u>Chavetas y pasadores</u>: <u>Descripción y clasificación</u>. <u>Diseño de chavetas planas y cuadradas</u>.
- 3. <u>Ajustes y Tolerancias</u>: Tolerancias (Norma ISA ISO). Ajuste con holgura. Ajuste con interferencias. Estado superficial.
- 4. <u>Soldadura</u>: Definición y conceptos teóricos. Nomenclatura. Materiales. Metodología de cálculo para diseño de soldaduras.
- 5. <u>Resortes</u>: Descripción y nomenclatura. Clasificación. Metodología de cálculo para diseño de resortes helicoidales.
- 6. <u>Ejes de transmisión</u>: Diseño por resistencia (Código ASME). Diseño por deformación. Diseño por velocidad crítica.
- 7. Rodamientos: Clasificación. Selección y cálculo.
- 8. Cojinetes de deslizamiento: Descripción y Clasificación. Materiales. Diseño.
- 9. <u>Engranajes</u>: Clasificación y usos. Cinemática de los engranajes rectos. Dinámica de los engranajes rectos. Cálculo de los engranajes rectos. Cálculo de engranajes helicoidales. Cálculo de engranajes cónicos. Cálculo de tornillos sin fin.
- 10. <u>Elementos flexibles de transmisión</u>: Clasificación y usos. Selección y cálculo de correas en V.
- 11. <u>Embragues, frenos y acoplamientos</u>: Clasificación y usos. Análisis y ecuaciones de cálculo de embragues y frenos.

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Tornillos	(1)	(1), (2)
Chavetas y Pasadores	(1)	(1), (2)
Ajustes y Tolerancia	(4)	
Soldadura	(2)	(5)
Resortes	(1)	
Ejes de Transmisión	(2)	(3)
Rodamientos	(3)	(1)
Cojinetes de deslizamiento	(2)	
Engranajes	(1)	(1)
Elementos flexibles de transmisión	(1)	(1)
Embragues frenos y acoples	(2)	(1), (3)

6.1 Básica

- 1. V. M. Faires (1985). Diseño de Elementos de Máquinas 4ta Edición. México: UTEHA.
- 2. Richard G. Budynas y J Keith Nisbett (2012). Diseño en Ingeniería de máquinas de Shigley 9a Edición. McGraw-Hill Interamericana
- 3. Catálogos de los fabricantes de Rodamiento.
- 4. Apuntes y material didáctico preparado por el docente.

6.2 Complementaria

- Richard G. Budynas y J Keith Nisbett (2012). Diseño en Ingeniería de máquinas de Shigley. McGraw-Hill Interamericana
- 2. Robert L. Norton (1999). Diseño de Elementos de Maquinas. Pearson educación, Prentice Hall. México: Pretince Hall.
- 3. Robert C. Juvinall (1993). Fundamentos de diseño para Ingeniería Mecánica. México D.F.: Editorial Limasu S.A.
- 4. Catálogos de los fabricantes de correas en V.
- 5. Normas UNIT, DIN e ISO.
- 6. Apuntes y material didáctico preparado por el docente.

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Análisis matemático, cálculo diferencial e integral, mecánica clásica y comportamiento mecánico de materiales
- **7.2 Conocimientos Previos Recomendados:** Física general, ecuaciones diferenciales, análisis vectorial y trigonometría.

ANEXO A Para todas las carreras

A1) INSTITUTO

Instituto de Ingeniería Mecánica y Producción Industrial.

A2) CRONOGRAMA TENTATIVO

Semana 1	Tornillos: Tornillos de sujeción (5 horas)	
Semana 2	Tornillos: Tornillos de transmisión de potencia (5 horas)	
Semana 3	Chavetas y pasadores (5 horas)	
Semana 4	Ajustes y tolerancia. Tolerancia y ajuste por holgura (5 horas)	
Semana 5	Ajustes y tolerancia. Ajuste por interferencia y estado superficial (5 horas)	
Semana 6	Soldadura (5 horas)	
Semana 7	Resorte (5 horas)	
Semana 8	Primer parcial	
Semana 9	Ejes de transmisión (2 horas). Rodamientos (3 horas)	
Semana 10	Rodamientos (2 horas). Cojinetes de deslizamiento (3 horas)	
Semana 11	Engranajes: Clasificación y usos, Cinemática de los engranajes rectos,	
	Dinámica de los engranajes rectos, Cálculo de los engranajes rectos (5 horas)	
Semana 12	Engranajes: Cálculo de engranajes helicoidales, Cálculo de engranajes	
	cónicos, Cálculo de tornillos sin fin. (5 horas)	
Semana 13	Elementos flexibles de transmisión (5 horas)	
Semana 14	Embragues frenos y acoples (5 horas)	
Semana 15	Segundo parcial y entrega de monografía	

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

El curso será evaluado a partir de dos parciales (un parcial a mitad de curso y otro a final) y la realización de un proyecto de diseño de un componente mecánico. Cada instancia de evaluación corresponderá a una nota máxima de 12 puntos, siendo el puntaje máximo del curso 36 puntos. Se consideran las siguientes franjas de puntaje total obtenido en las pruebas:

- Menos de 25%: reprueba el curso.
- Entre 25 y 60%: obtiene el curso y deberá rendir examen práctico-teórico.
- Con más de 60%: aprueba la unidad curricular.

A4) CALIDAD DE LIBRE

Los estudiantes no pueden acceder a la calidad de libre.

Sunco

ANEXO B para las carreras Ingeniería Industrial Mecánica e Ingeniería Naval

B1) ÁREA DE FORMACIÓN

Materiales y Diseño

B2) UNIDADES CURRICULARES PREVIAS

Curso:

Comportamiento Mecánico de Materiales 2 (Curso)

Examen:

Comportamiento Mecánico de Materiales 2 (Examen) Elementos de Máquinas (Curso)

APROB. RES. CONSEJO DE FAC. ING.

10th 9 10 2018 pp. 060190-000726-18

APROBADO POR RES. CONSEJO FAC. ING. FECHA 09/10/2018 EXP 060190-0007218