1556/18

Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

Programa de INSTRUMENTACIÓN INDUSTRIAL

1. NOMBRE DE LA UNIDAD CURRICULAR

Instrumentación Industrial

2. CRÉDITOS

8 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

Familiarizar al estudiante con los diversos componentes de los sistemas de control, los principios de funcionamiento, los criterios de selección y sus aplicaciones en las distintas industrias.

Dar a conocer al estudiante la terminología, los conceptos, procedimientos y cálculos usados por los ingenieros y técnicos para analizar, seleccionar, especificar y mantener los componentes de un sistema de control.

4. METODOLOGÍA DE ENSEÑANZA

Se dictarán 4 horas de clase por semana, no existiendo una distribución precisa entre teórico y práctico, ya que la misma depende de la temática tratada. En términos generales, se estima un 70% de estas horas dedicadas a clases teóricas y un 30% a clases prácticas (dentro de las cuales se incluyen clases expositivas y de consulta). A su vez se espera una dedicación no presencial de 4 horas por parte de los alumnos.

Se buscará complementar estas actividades con visitas a plantas industriales o experiencias de laboratorio demostrativas para los estudiantes siendo siempre su participación opcional.

Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

5. TEMARIO

1. Introducción

- 1.1. Conceptos y terminología básicos asociados a control.
- 1.2. Tipos de control.
- 1.3. Ejemplos de sistemas de control.

2. Instrumentación

- 2.1. Características de los instrumentos de medida.
- 2.2. Medición de presión.
- 2.3. Medición de caudal.
- 2.4. Medición de nivel.
- 2.5. Medición de temperaturas.
- 2.6. Otras variables físicas y químicas.

3. Sistemas de actuadores

- 3.1. Actuadores neumáticos e hidráulicos.
- 3.2. Válvulas.
- 3.3. Sistemas de actuación mecánica y eléctricos.

Acondicionamiento y procesamiento de señales

- 4.1. Acondicionamiento para sensores.
- 4.2. Amplificadores, filtros, etc.
- 4.3. Interferencias.
- 4.4. Protocolos y lenguajes de comunicación.

Teoría de control.

- 5.1. Controladores.
- 5.2. Control de procesos discretos.
- 5.3. Control de procesos continuos.
- 5.4. Introducción al modelado de sistemas físicos.
- 5.5. Funciones de transferencia y transformada de Laplace.
- 5.6. Métodos de análisis.

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Introducción	(1)	(4)(5)(6)
Instrumentación	(1)	(4)(5)
Sistemas de actuadores	(1)	(4)(5)(6)
	(2)	(4)(5)(6)
Acondicionamiento y procesamiento de señales	(3)	(5)(6)
Teoría de control		1-/(-)

6.1 Básica

- 1. Creus, Antonio (2010). Instrumentación Industrial. México: Alfaomega Grupo Editor.
- 2. Pallas Ramon (2003). Sensores y Acondicionadores de señal. España: S.A. Marcombo.
- 3. Ogata IKatsuhiko (2010). Ingeniería de control moderna. España: Person Educación S.A.

6.2 Complementaria

- 4. Figliola Richard (2008). Mediciones Mecánicas Teoría y Diseño. México: Alfaomega Grupo Editor.
- 5. Kuphaldt Tony (2015). Lessons in Industrial Instrumentation.
- 6. Bolton William (2013). MECATRÓNICA. México: Alfaomega Grupo Editor.

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Conocimientos básicos de: electricidad, mecánica, termodinámica y mecánica de los fluidos.
- **7.2 Conocimientos Previos Recomendados:** Conocimientos de electrotécnica, transferencia de calor y masa, instalaciones hidráulicas y máquinas para fluidos. Conocimientos de mecánica del sólido así como de procesos industriales.

Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

ANEXO A Para todas las Carreras

A1) INSTITUTO

Instituto de Ingeniería Mecánica y Producción Industrial - IIMPI.

A2) CRONOGRAMA TENTATIVO

Semana 1	Introducción	
Semana 2	Instrumentación. Características de los instrumentos de medida.	
Semana 3	Instrumentación. Medición de presión. Medición de caudal.	
Semana 4	Instrumentación. Medición de nivel. Medición de temperaturas.	
Semana 5	Instrumentación. Otras variables físicas y químicas.	
Semana 6	Sistemas de actuadores. Actuadores neumáticos e hidráulicos.	
Semana 7	Sistemas de actuadores. Válvulas.	
Semana 8	Sistemas de actuadores. Sistemas de actuación mecánica y eléctricos.	
Semana 9	Acondicionamiento y procesamiento de señales. Acondicionamiento para	
	sensores.	
Semana 10	Acondicionamiento y procesamiento de señales. Amplificadores, filtros, etc.	
	Interferencias.	
Semana 11	Acondicionamiento y procesamiento de señales. Protocolos y lenguajes de	
	comunicación.	
Semana 12	Teoría de control. Controladores. Control de procesos discretos.	
Semana 13	Teoría de control. Control de procesos continuos.	
Semana 14	Teoría de control. Introducción al modelado de sistemas físicos. Funciones	
	de transferencia y transformada de Laplace.	
Semana 15	Teoría de control. Métodos de análisis.	

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

La evaluación consistirá en dos parciales escritos, teórico-práctico, de 50 puntos cada uno. Se podrán considerar tareas complementarias como son: prácticas de laboratorio, cuestionarios, exposiciones o visitas, las cuales, en caso de dictarse sumarán un máximo de 10 puntos extras sobre el obtenido en los parciales.

Si el resultado final es mayor o igual a los 60% puntos del total, se exonera de forma total el examen y se aprueba la unidad curricular. Si el puntaje es mayor o igual a 25% y menor a 60%

Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

del total, se deberá rendir examen. Si el puntaje es menor al 25% del total, se reprueba la unidad curricular.

A4) CALIDAD DE LIBRE

Los estudiantes podrán acceder a la calidad de libre.

A5) CUPOS DE LA UNIDAD CURRICULAR

No existen cupos.

ANEXO B para las carreras Ingeniería Industrial Mecánica e Ingeniería Naval

B1) ÁREA DE FORMACIÓN

Control e Instrumentación

B2) UNIDADES CURRICULARES PREVIAS

Curso:

Electrotécnica 2 (Curso)
Comportamiento Mecánico de Materiales 1 (Curso)
Elementos de Mecánica de los Fluidos (Examen)
Física Térmica (Examen)

Examen:

Instrumentación Industrial (Curso)

ANEXO B para la carrera de INGENIERÍA QUÍMICA

B1) ÁREA DE FORMACIÓN

Ingeniería de Procesos Químicos y Biológicos

B2) UNIDADES CURRICULARES PREVIAS

Curso: Electrotécnica I (FING 2108, examen)

Termodinámica Aplicada a la Ing. de Procesos (FING Q21, examen) Fenómenos de Transporte en Ing. de Procesos (FING Q22, examen)

Mecánica Aplicada (FING Q73, curso)

Examen: Instrumentación Industrial (curso)

APROBADO POR RES. CONSEJO FAC. ING FECHA 18/03/2025 EXP 061130-000022-24