Effectiveness and Cost of Verification Techniques
Preliminary Conclusions on Five Techniques

Diego Vallespir
Instituto de Computacion

Facultad de Ingenieria, Universidad de la Repiiblica

Montevideo, Uruguay
dvallesp @fing.edu.uy

Abstract—A group of 17 students applied 5 unit verification
techniques in a simple Java program as training for a formal
experiment. The verification techniques applied are desktop
inspection, equivalence partitioning and boundary-value anal-
ysis, decision table, linearly independent path, and multiple
condition coverage. The first one is a static technique, while
the others are dynamic. JUnit test cases are generated when
dynamic techniques are applied. Both the defects and the
execution time are registered. Execution time is considered as a
cost measure for the techniques. Preliminary results yield three
relevant conclusions. As a first conclusion, performance defects
are not easily found. Secondly, unit verification is rather costly
and the percentage of defects it detects is low. Finally desktop
inspection detects a greater variety of defects than the other
techniques.

Keywords-Unit testing; Testing; Software engineering; Em-
pirical software engineering;

I. INTRODUCTION

It is normal to use a hammer to hammer a nail into a wall.
There are different types of hammers but it is easy to choose
one and even more, a lot of different hammers do the same
job. It is normal to use a software verification technique to
verify a software unit. It is not known which one to choose.

To know which verification technique to choose for unit
testing we must know several things, for example, the cost,
the effectiveness and the efficiency of each technique. Even
more, these things can vary depending on the person who
applies it, the programming language and the application
type (information system, robotics, etc.). Some advances
have been made but we have a long way to go.

Here we define the cost of the technique as the time that
takes its execution, the effectiveness as the percentage of
defect found by the technique and the efficiency as the time
that takes to find a defect.

In [1] the authors examine different experiments on soft-
ware testing: [2], [3], [4], [5], [6], [7], [8], [9], [10], finding
that:

o It seems that some types of faults are not well suited

to some testing techniques.

e The results vary greatly from one study to another.

o When the tester is experienced

Juliana Herbert
Herbert Consulting
Porto Alegre, RS, Brazil
Jjuliana@herbertconsulting.com

— Functional testing is more effective than coverage
all program statements, although the functional
approach takes longer.

— Functional testing is as effective as conditional
testing and consumes less time.

o In some experiments data-flow testing and mutation
testing are equally effective.

« In some other experiments mutation testing performed
better than data-flow testing in terms of effectiveness.

o In all the experiments mutation testing was more ex-
pensive than data-flow testing.

o Changes of programming languages and/or environ-
ments can produce different results in replications of
experiments that are rather old.

« Most programs used in the experiments suffer from at
least one of these two problems:

— They are small and simple.
— The defects are seeded by the researches.

One of their observations is that researchers should publish
more information not only about the number of faults the
techique can remove but also about the types.

We are in the execution phase of an experiment. It uses 4
programs that are built specially for the experiment. We use
2 taxonomies to classify defects, IBM Orthogonal Defect
Classification [11] and Beizer’s Taxonomy [12], therefore
we are able to discuss the results by defect type.

Before an experiment starts, the testers (the subjects
who will execute the verification techniques) need previous
preparation. In our experiment this includes a course on
every technique to be applied, a course on the scripts
to use during execution, a course on IBM’s and Beizer’s
Taxonomies and a training execution of the techniques in a
simple program. This execution serves to adjust the scripts,
to assure that every tester understands the techniques and
to have some ideas of what it can be expected from each
technique. In this paper we present the training phase of the
experiment and the associated results. The results do not
have statistical validity. They are just observations during
the tester’s training and before the execution of the real

experiment.

The most important result is that verification is really
expensive and can find a poor quantity of the defects. As
it was said before, this is the result of a training phase
in an experiment with undergraduate students, thus more
data is needed. However, the results can be still considered
from a software development point of view: quality has to
be built during the construction phase and not during the
testing phase. This is in some way related to PSP and other
Humphrey ideas [13], [14] and to Pair programming ideas
as well [15].

The article is organized as follows. Section II presents
the techniques used in the training, the scripts and the
taxonomies. Section III presents the Java program that is
verified by the testers. The defects that the program contains
are listed in section IV. The results obtained are presented
in section V and the conclusions in section VI.

II. TECHNIQUES, TAXONOMIES AND SCRIPTS

We use the same terminology for the verification tech-
niques as Swebok [16]. The techniques can be divided in
different types: static, tester intuition or experience, specifi-
cation based, code based, fault based and usage based. At
the same time code-based is divided in control flow and data
flow based criteria.

In our experiment we choose 5 testing techniques: desk-
top inspection, equivalence partitioning and boundary-value
analysis (EP), decision table (DT), linearly independent
path (LIP), and multiple condition coverage (MCC). Using
these techniques the static, specification-based and control-
flow based techniques types are covered. Swebok considers
equivalence partitioning and boundary-value analysis as two
separate techniques. Given they are generally used together,
the testers apply them as one.

We could not find literature describing experiments in
which DT, LIP and MCC techniques are applied, neither
could Juristo [17]. So, the experiment we are leading may
be the first one that applies these techniques.

We want to know the effectiveness of the techniques
according to defect types, so a defect taxonomy is necessary.
Various defect taxonomies are presented in the literature.
The IBM Orthogonal Defect Classification (ODC) is the
most used [11]. Other taxonomy of interest is Beizer’s
Defect Taxonomy [12].

ODC allows the defects to be classified in many orthogo-
nal views: defect removal activities, triggers, impact, target,
defect type, qualifier, age and source. In the experiment we
only take into account the defect type and the qualifier. The
defect type can be one of the following: assign/init, check-
ing, algorithm/method, function/class/object, timing/serial,
interface/O.0. messages and relationship. The qualifier can
be: missing, incorrect or extraneous. So, every defect must
be classified in both views, for example, a defect could be
classified as “timing/serial incorrect”.

Beizer’s taxonomy is hierarchical in the sense that each
category is divided in sub-categories and so on. For example,
the category number 3 is “Structural bugs” and is divided
in 3.1 “Control flow and sequencing” and 3.2 “Processing”.
Category 3.1 is divided in several sub-categories more. This
taxonomy presents a lot of different types of defects, so it
may be interesting to use it. By doing this, our knowledge
about the effectiveness of the techniques by defect type will
be highly improved.

The testers follow scripts that provide them with guidance,
thus they are able to execute the technique and register the
data required in the experiment correctly. There are 3 scripts,
one for each type of technique used: static, specification-
based and control-based. These always consist of the same
phases: preparation, design, execution and finish.

In the preparation phase the tester is already able to start
the verification job. In the design one the tester develops
the test cases that achieve the verification technique criteria.
During execution the test cases are executed and the tester
searches for the defects of every case that fails. In the last
phase, the finish, the tester closes the job. In every phase the
tester has to register the time elapsed during the activities
and every defect found. These phases are slightly different
for inspection technique.

III. THE PROGRAM

The program that the testers used in the training is an
uncomplicated and very simple Java program. It is un-
complicated because its function is to order an array of
integers and eliminate every duplicated element. It is simple
because it only consists of two classes, one of these has 18
uncommented LOCs and the other has 19. This program is
used in the training and not in the experiment.

A. Specification and Source Code

Figure 1 shows the collaboration diagram of the two
classes of the program. Each class has a only one public
method with its specification.

1: ciderWilhoutiPepia) 1.1: ordarjal

—————— OrderefWVithoutRep |————m Orderar

Figure 1. UML Collaboration Diagram of the Program
The following presents both the signature and the speci-
fication of the order method of the Orderer class.

public static void order(int[] a)

This method returns the a array ordered from the
lowest to the greatest.

In the case that the array is null or empty it remains
unchanged.

For example: a = [1, 3, 5, 3, 3]. After the method is
executed the a array changes to [1, 3, 3, 3, 5]

Parameters
a - array of integer to be ordered

The following is the signature and the specification of the
orderWithoutRep method of the OrdererWithoutRep class.

public static int OrdererWithoutRep(int[] a)

This method returns the a array orderer from the
lowest to the greatest and without repeated integers
from the position O to the position “a.length - quantity
of repeated integers - 1.

The values in the a array from position “a.length

- quantity of repeated integers - 17 to position
“a.length - 1”7 are unknown.

In the case that the array is null or empty it remains
unchanged and the method returns the value O.

For example: a = [5, 4, 5, 6, 6, 5]. The quantity
of repeated integers is equal to 3. Number 5 is
repeated twice and number 6 is repeated one.
After this method is executed the a array from
position 0 to position 2 must be: [4, 5, 6]. And the

13 }

14 }

15 if (swapped == 0) {
16 return;

17 }

18 }

19 }

20 }

The following is the source code of the OrdererWith-
outRep class:

1 public class OrdererWithoutRep {

2

3 public static int orderWithoutRep (int[] a) {
4 int countElim = 0;

5 Orderer.order (a);

6 for (int i=0; i<a.length-1; i++) {

7 if (al[i] == al[i+1l]) {

8 move (a, 1+1);

9 countElim++;

10 }

11 }

12 return countElim;

13 }

14

15 private static void move (int[] a, int i) {
16 for (int j=i; j<a.length-1; Jj++){

17 aljl=alj+1];

18 }

19 }

20 }

IV. DEFECTS

This section presents the defects in the code that are
relevant to our analysis, other defects exist but are of much
less importance.

The defects are classified as Possible Failure (PF) or Not

values in the a array from position 3 to 5 are unknown (dgragl@aNdT). The PF defects are those which may produce a

The position 2 is calculated as 6 — 3 — 1. This is
length - quantity of repeated integers - 1.

The method returns the value 3 (quantity of repeated
integers).

Parameters

a array of integers to be ordered
Returns

the quantity of repeated elements

The following is the source code of the Orderer class:

1 public class Orderer {

2

3 public static void order (int[] a){
4 for (int i=a.length-1; 1i>0; i--){
5 int swapped = 0;

6 int find = 0;

7 for (int J=0; Jj<i; J++){

8 if (alj] > alj+11){

9 int aux = aljl;

10 alj+1] = al3jl;

11 aljl = aux;

12 swapped=1;

failure during the execution of the program. The NF defects
never produce a failure during execution but may cause other
problems; for example, performance problems or problems
during the software maintenance phase.

The class Orderer has 7 defects to consider. They are
named with uppercase letters from letter A to letter G. From
the class OrdererWithoutRep 6 defects are analyzed, which
are named with lowercase letters from letter a to letter f.

A. Orderer’s Defects

Here we present the defects of the Orderer class. Figure
2 shows the defects in the code with a ellipse around them.
The following presents the description of each defect.
Defect A - PF
The order method starts with a for sentence in line 4: This
sentence access to a array through length. If the array is
null during execution a failure is produced and the program
finishes abruptly. The defect is that a is not checked for
null prior to access it.
Defect B - PF
The order method makes a swap between variables of the
array, this occurs from line 9 to 11 in the code. The swap
is wrong because the value that contains a[j+1] is not

public class Orderer {
X /IMissing “private Orderer(){}"
public static VOid order (intd@)P /Variable name a isn’t mnemonic
for(int i Iy i>0; i--){ /IVariable a can be null. Wrong access

1
2

3

4

5 = 0; /IVariable swapped must be boolean
6 /ffind is never used in the program

7 for (|ntJ 0 J<I jH){

8
9

if (a[il >af+11Y{
/Wrong swap. Must be j+1 in place of j
10 alj+1] = a[j];
11 afj] = aux;
12 swapped=1;
13 }
14 }
15 if (swapped == 0) {
16 <tefurn> //Breaks the loop
17 }
18 }
19 1}
20}
Figure 2. Defects of the Orderer Class

preserved. A failure due to this defect is shown in Figure
3. This figure presents the state of the array a after the
execution of the inner for.

=[1,3,5,3,3] Expected Result = [1, 3, 3, 3, 5]
i=4,j=0,al0]<=a[1] => a=[1, 3,5, 3, 3]
i=4,j=1,a[1]<=a[2] => a=[1, 3,5, 3, 3]
i=4,j=2,a[2] > a[3] => a=[1, 3, 5, 5, 3] //Failure due to B
i=4,j=3,a[3] > a[4] => a=[1, 3, 5, 5, 5] //Failure due to B
i=3

The array is in order, so there won’t be more swaps.
Line 16 will return from the method.

Obtained result = [1, 3, 5, 5, 5]

Figure 3. An Execution of order Method Showing Defect B Occurrence

Defect C - NF

The class has only one method and it is a static one. It is
not reasonable to construct an object of this class. If the
Java compiler does not found a constructor it automatically
creates a parameterless public method by default, allowing
the creation of objects of this class. A private constructor
method is needed in order to avoid this.

Defect D - NF

The variable swapped must be boolean but it is defined as
an int. The variable is defined in line 6.

Defect E - NF

The variable name for the array a is not mnemonic. Replac-
ing the name affects several lines of code.

Defect F - NF

The method has two loops, the outer one starts at line 4.
Line 15 checks the value of swapped and in the case that
it is cero (no changes has been made in the inner loop) the
method returns. This can be avoided by adding the condition
to the outer for. This defect is particular because it could

not be considered a defect on its own.

Defect G - NF

In line 6 the variable find is defined and it is never used
in the program.

B. OrdererWithoutRep Defects

Here we present the defects in the OrdererWithoutRep
class. Figure 4 shows the defects in the code with a ellipse
around them. The following is the description of each defect.

1 public class OrdererWithoutRep {

2 X IIMissing “private Orderer(){}"

3 public static int orderWithoutRep(int[@X /Variable name a isn't mnemonic

4 int countElim = 0;

5 Orderer.order(a);

6 for(lnt i= ! +) I\Wrong access to a and bad condition in for
7 ali] == a |+ N

8 move(a, i+1); IIVariable i is incorrectly incremented after this block
9 countElim++;

10 }

11

12 return countElim;

13 }

14

15 private static void move(int[] a, int i){
16 for(int j=iG<a.length-17++)

17 afjl=af+1];
}

//Bad condition in for

18
19 }
20}
Figure 4. Defects of the OrdererWithoutRep Class
Defect a - PF
The defect is similar to defect A.
Defect b - PF

After calling the method move the index i is incremented
in one, this produces a failure if there are more than 2
equal integers in the array because some of them are not
considered. An execution showing this defect, defect d
and their associated failures are shown in Figure 5. The
interrogation mark in the expected result means that the
value in this position does not matter. This defect can be
removed in different ways. An easy but not very good one
is to decrement i after calling the move method. A better
solution is to add a loop until a different integer appears.

a=[1,33,3,5]
Expected Result =[1, 3,5, ?,?] Return 2

i=0,a[0]!= a[1] => a
i=1,a[1]==a[2] => a
i=2,a2]!= a[3] => a
i=3,a[3]==a[4] => a
i = 4 => the method fini

, 5], countElim =0
, 5], countElim = 1 //defect b execution
] countElim =1 /ffailure due to b

1,
[1,
1,
[1,], countElim = 2 //failure due to d

(A(A)Q)b)
LW ww
oo w
(n(n(n(n

sh

Defect d’s failure makes the method returns the right countElim value

Obtained result = [1, 3, 3, 5, 5] Return 2

Figure 5. An Execution Showing Defects b and d Occurrences

Defect ¢ - NF

The defect is similar to defect C.

Defect d - PF

When equal elements are found the move method is exe-
cuted, and it leaves repeated elements at the end of the array

as a side effect. These last elements are of no importance
and the specification is clear about this. However, these
repeated elements are considered as equal elements causing
an incorrect result in the method orderWithoutRep. This
defect can be removed by changing the line 6 of the method
from:

for (int i=0; i<a.length-1; i++) {

to

for (int i=0; i<a.length-l-countElim; i++) {

Figure 5 shows this defect and defect b causing failures
during execution. The failure due to defect d fixes the
counter of equal elements. Another example showing a
failure in both results (the a array and the counter) is shown
in Figure 6.

a=[1,3,3,3,3,5]

Expected Result=[1, 3,5, ?,?,?] Return2
i=0,a[0]!= a[1] =>
i=1,a[1]==a[2] =>
i=2,a[2] ==a[3] =>
i=3,a[3]==a[4] =>
i=4,a[4] == a[5] =>
i = 5 => the method finish

3,3, 3, 3, 5], countElim=0
3,3, 3, 5, 5], countElim =1 //failure due to b
1,3, 3, 5,5, 5], countElim =2 //failure due to b
3,3,55
3,3,55

39y 9,

3 9y

, 5], countElim =3 //failure due to d
, 5], countElim =4 //failure due to d

Lo

Obtained result = [1, 3, 3, 5, 5, 5] Return 4

Figure 6. Another Execution Showing Defects b and d Occurrences
Defect e - NF
The defect is similar to defect E.
Defect f - NF

The move method has a for in line 16 that traverses the
array from an initial position (the one that is passed to the
method) to the final position. It is not necessary to traverse
the array until the final position because at the end there are
elements that should not be considered. This is a defect that
affects the performance but not the results. To optimize the
method the line mentioned can be sustituted with the next
one:
for (int j=i; j<a.length-l-countElim; j++) {
The variable countE1lim must be passed to the method.
Table I presents the quantity of defects discriminated by
class, type of defect (PF, NF) and the totals.

Table I
QUANTITY OF DEFECTS BY CLASS, TYPE AND TOTAL

Class/Defect Type PF | NF | Total

Orderer 2 5 7

OrdererWithoutRep 3 3 6

Total 5 8 13
V. RESULTS

A group of 17 undergraduate students participated of
the testing experience. These were students in the fourth
year of the Computer Engineering career at the Facultad de
Ingeniera of the Universidad de la Repblica. Every student

applied only one testing technique in the program. We
divided the group as follows: 3 students applied desktop
inspections, 4 students applied MCC, 3 students applied LIP,
4 students applied EP and 3 students applied DT.

The results of the testing experience are presented in Table
II. The rows present the defects that the participants detected,
the total number of defects detected by the participants and
the time in minutes that the application of the technique
took them. For inspection technique the defect found by a
participant is marked with an “X”. For the other techniques
appears the time in minutes that takes to find the defect
after a test case fails. The time (last column) means different
things depending on the technique. For inspection technique
it is the time that takes executing the technique, while for
the dynamics techniques it is the time that takes designing
and programming the test cases. Also there are rows that
show subtotals by technique and the last row presents the
sum total.

The results associated to the LIP technique are strange
in the sense that the 3 participants that use this technique
discover only one and the same defect. From a theoretical
point of view of the technique we know that this result
is not ‘“correct”. Different things can cause this situation,
for example, the LIP technique was not understood by the
participants. This and other causes are beyond the scope of
this paper. Due to the described situation the LIP technique
is not considered for the analysis of the results.

It is not possible to have strong or statistically valid
conclusions with this training. Our intention is to make a
preliminary analysis of the results. After the formal experi-
ment finishes we can validate (or not) the preliminary results
of this training phase.

In the next subsections we briefly discuss the cost, the
effectiveness, and the efficiency of every technique. The last
subsection presents a discussion on the IBM and Beizer
taxonomies.

A. The Cost

We consider the time that the execution of each technique
takes as a measure of its cost for the program. The cost of
the inspection technique is the time that takes the inspection.
The cost of the dynamic techniques is the time that takes
designing the test cases plus the time in detecting defects
after a failure. We consider that the time that takes executing
the Junit test cases is cero.

The cost of the techniques varies greatly from one tester
to another and from technique to technique. These variations
could have different explanations. We need to gather more
data to make interesting and valid conclusions about the
variations. We are not sure if this variations depend on the
wrong or right application of the technique or are due to
natural differences in humans beings. However, we can still
make a general analysis of the cost of each technique.

Table II
DEFECTS DETECTED AND TIME EXPENDED

T Def. A | B|C|D|E|F| G |a|blc|dl|el|f|TP]| t
ecC.
g X | X X 3 | 80
g '§ X X X 3 | 300
S 2. X X X XX | X 6 | 240
E [Tot | 2 T (T[0T 2] 0 |20 [T [T [T [0]12
0.08 | 05 0.17 60 & | 300
0 6 0 7 1 90
< % 5 T | 20
8 5 10 2 | 90
2 Tot | 1 T [0[0[0]0] T |0 T [0[2]0[0]09
= 5 T | 330
o X T | 260
— 10 T | 150
3 Tot | O 3 1010[0[0] 0 000003
3 | 5 T [15 10 5 | 102
0 2 360
< | & 5 | 12 15 3 [210
2 T T T 5 7120
4 Tot | 3 F[0[0]0]0] 0 |3 T [0 30014
= 5 | 7 0 0 | 440
= T 3 T 3 | 150
A X | X X [X X 5 | 350
Tot | 3 3 0l0|0[0] 0 [3] 102]0]0]12
ST| 9 |15 1]0] 12 1 |38 T8] 1]0]50

The costs of inspection techniques for the 3 testers that
applied the techniques are: 80, 240 and 300 minutes. The
average cost of the inspection is 207 minutes (3.5 hours
approximately). Considering that the program has a total of
37 locs we can conclude that doing desktop inspection in
Java is really expensive; an average of 5.5 minutes/loc.

The costs of the MCC have the same variability. The
minimum time elapsed is 20 minutes and the maximum
is 300 minutes. The average cost of MCC is 125 minutes
(2 hours approximately). Here we have to consider the
conditions that appear in the code as a measure of the
complexity to generate the test cases. Class Orderer has
two nested for with an if in the inner one and an if
in the other. Each decision has only one condition in these
sentences. Class OrdererWithoutRep has two nested loops
too; we are considering the for in the private method
move. In terms of nesting and decisions these classes can
be considered from low to normal complexity. Again, testing
the two classes in 2 hours seems to be rather expensive.

The average costs of the two specification based tech-
niques are: 198 minutes (3.3 hours) for EP and 313 minutes
(5.2 hours approximately) for DT. Considering that the
functionality of the problem is really simple (ordering an
array) we can conclude that testing a program with this
techniques is expensive too.

After a test case fails the tester searches for the defect
that produces it. The time varies a lot from tester to tester
in finding the same defect. We need further data to make
conclusions about the time that is needed to find different

types of defects in unit testing.

B. The Effectiveness

We measure the effectiveness of a technique as the defects
it founds. Table III shows the effectiveness of each technique
for each defect and the total effectiveness for each defect.

As it was mentioned before this is just the training phase
of the experiment so we do not analyze the results in a
statistical way. Nevertheless, we present some results that
can be refuted by experiments later.

PF defects are more easily to find than NF defects.
The PF defects are A, B, a, b and d. Defects A, B, a and
d have more than 50% detection effectiveness, defect b has
a 21% detection effectiveness. The other defects have less
detection effectiveness.

Inspections detect a greater variety of defects than
the other techniques. Among the 3 testers applying the
inspection 9 out of the 13 defects are found. MCC and EP
discover 5 defects with 4 testers and DT discovers 4 different
defects with 3 testers.

Dynamic techniques have problems in founding NF
defects. Using EP and DT the participants did not discover
any of the NP defects. With MCC only one NP defect is
found: G. The reason for this is that dynamic techniques
are based in the execution of the program. So defects that
do not produce a failure are never sought directly. However,
when a test case fails the tester reviews the code to find the
defect that produce the failure, in this review the tester can
find other defects, including a NF defect.

Table III
EFFECTIVENESS BY TECHNIQUE IN PERCENTAGE

Def.

Tec A B C | D| E F G a b c d e f
Tnsp. 67 | 33 | 33033670 67 [0 [33][33]3]0
MCC 25 100 | O 0 0 0 | 25 0 25 0[5 0|0
EP 75 100 | O 0 0 0 0 75 25 0 | 75 0|0
DT 100 | 100 | O 0 0 0 0 100 | 33 0]67| 0|0
All 64 86 7 0 7 141 7 57 21 7 57 | 17 0
. . Table V
Performance defects are not easily found. Defect f is CLASSIFICATION WITH BEIZER
the only performance defect of the program and it was not Defect
detected during the experience. Defect Type A B F]a
Effectiveness is really low. The effectiveness of each ;}‘i . 2 1 1]1
technique can be calculated as the number of defects found 543 g i
divided by the number of total defects. This simple experi- 76. 1
ence presents the following effectiveness: inspections 31% 3.11 1
(12/37), MCC 17% (9/52), EP 27% (14/52) and DT 31% 3.1.2 L
L) . . 314 I 21 2
(12/39). Considering the effectiveness of the “team”, we 331 1 TTT 73
have that 14 people verifying a really small program (37 322] 1 I
locs) only found 11 defects on a total of 13. Z%g g
) 122 2 2 1
C. The Efficiency 323 i
. 424 1 1
We calculate the efficiency as: Defects Foun.d / Cost. Fround o T3 1213 33
We use the average of defects found by technique. The Different Clasif. | 8 | 5 | 2 | 7 | 3| 5

efficiency of each technique is: 1.16 defects/hour for desktop
inspections, 1.08 defects/hour for MCC, 1.06 defects/hour
for EP and 0.77 defects/hour for DT. We can conclude that
it takes too much time to find a defect, for every technique
the cost is about an hour or more.

D. The Defect’s Classification

The testers had to classify each defect in IBM and Beizer
taxonomies. Tables IV and V present the IBM and Beizer
classifications obtained in the experience of each defect. In
this case is considered the LIP technique. In both tables are
presented only those defects that have been found more than
once.

Table IV
CLASSIFICATION WITH IBM

. Defect
Type Qualifier AT B TF a6 Td
Checking Missing 8 8
Checking Incorrect 6
Assing/Init. Incorrect | 1 15
Assing/Init. Missing 1
Algorithm/Method | Incorrect 2 1
#Found 9 (1512 |8|3]8
Different Clasif. 2 1 1 1 113

It is clear that IBM classification works better for the
testers than Beizer classification. At the time of classifying
with IBM, the testers normally classified the same defect
under the same type. On the other hand, when it comes
to Beizer classification it is completely the opposite. Thus,

Beizer could be a good taxonomy for presenting the effec-
tiveness by defect type but it seems rather complicated to
testers or developers. IBM seems to be easier to use.

We conclude that it is better if the researchers classify the
defects instead of the testers.

VI. CONCLUSIONS

We present a Java program with its defects and a training
experience during an experiment. The training consists of 17
students applying 5 testing techniques, desktop inspection,
equivalence partitioning and boundary-value analysis, deci-
sion table, linearly independent path, and multiple condition
coverage.

We show the results on the effectiveness and cost of these
techniques. When the formal experiment ends we will be
able to analyze these results with more data.

ACKNOWLEDGMENT

The authors would like to thank Lorena Ibaceta for her
helpful comments on this article.

REFERENCES

[1] A. Moreno, F. Shull, N. Juristo, and S. Vegas, “A look at
25 years of data,” IEEE Software, vol. 26, no. 1, pp. 15-17,
Jan.—Feb. 2009.

[2] P. G. Frankl and S. N. Weiss, “An experimental comparison
of the effectiveness of branch testing and data flow testing,”
IEEE Transactions on Software Engineering, vol. 19, no. 8,
pp. 774-787, Aug. 1993.

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Ex-
periments on the effectiveness of dataflow- and control-flow-
based test adequacy criteria,” in Proc. ICSE-16. th Interna-
tional Conference on Software Engineering, 16-21 May 1994,
pp- 191-200.

P. G. Frankl and O. Iakounenko, “Further empirical studies
of test effectiveness,” ACM SIGSOFT Software Engineering
Notes, vol. 23, no. 6, pp. 153-162, November 1998.

G. Myers J., “A controlled experiment in program testing
and code walkthroughs/inspections,” Communications of the
ACM, vol. 21, no. 9, pp. 760-768, September 1978.

V. R. Basili and R. W. Selby, “Comparing the effectiveness
of software testing strategies,” IEEE Transactions on Software
Engineering, vol. 13, no. 12, pp. 1278-1296, Dec. 1987.

E. Kamsties and C. M. Lott, “An empirical evaluation of
three defect-detection techniques,” in Proceedings of the Fifth
European Software Engineering Conference, 1995, pp. 362—
383.

M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing
and combining software defect detection techniques: a repli-
cated empirical study,” ACM SIGSOFT Software Engineering
Notes, vol. 22, no. 6, pp. 262-277, 1997.

A. P. Mathur and W. E. Wong, “Fault detection effectiveness
of mutation and data flow testing,” Software Quality Journal,
vol. 4, pp. 69-83, 1995.

P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mu-
tation testing: An experimental comparison of effectiveness,”
The Journal of Systems and Software, vol. 38, pp. 235-253,
1997.

R. Chillarege, Handbook of Software Reliability Engineering
- Chapter 9. Mcgraw-Hill, April 1996, ch. 9: Orthogonal
Defect Classification.

B. Beizer, Software Testing Techniques, 2nd ed. Van Nos-
trand Reinhold, June 1990.

W. Humphrey, PSP(sm): A Self-Improvement Process for
Software Engineers. Addison-Wesley Professional, March
2005.

——, A Discipline for Software Engineering. Addison-
Wesley Professional, January 1995.

K. Beck and C. Andres, Extreme Programming Explained:
Embrace Change, 2nd ed. Addison-Wesley Professional,
November 2004.

IEEE/ACM, Software Engineering Body of Knowledge: Iron
Man Version, May 2004.

N. Juristo, A. Moreno, S. Vegas, and M. Solari, “In search
of what we experimentally know about unit testing,” /IEEE
Software, vol. 23, no. 6, pp. 72-80, November 2006.

