
Effectiveness of Five Verification Techniques
Diego Vallespir, Cecilia Apa, Stephanie De León, Rosana Robaina

Instituto de Computación, Facultad de Ingenierı́a
Universidad de la República,

Montevideo, Uruguay

Juliana Herbert
Herbert Consulting

Porto Alegre, RS, Brazil

Abstract—Here we present a formal experiment in order to
know the effectiveness of 5 different unit testing techniques.
The techniques are: desktop inspection, equivalence partitioning
and boundary-value analysis, decision table, linearly independent
path, and multiple condition coverage. The proposed design is
a one factor with multiple levels one. This is the first formal
experiment we know about that uses decision table, linearly in-
dependent path and multiple condition coverage techniques. The
experiment is executed by 14 testers that apply the techniques
in 4 different programs developed especially for this experiment.
The statistical results show that decision table and equivalence
partitioning techniques are more effective than linearly indepen-
dent path technique.

Keywords-Software engineering; Empirical software engineer-
ing; Testing; Unit testing

I. INTRODUCTION

It is quite common to use a software testing technique to
verify a software unit, but choosing one can be very intricate.

In order to do so in a simpler way, we must know several
things beforehand, for example, the cost, the effectiveness and
the efficiency of each technique. Even more, these things can
vary depending on the person who applies it, the program-
ming language and the application type (information system,
robotics, etc.). Some advances have been made but we have a
long way to go.

Many formal experiments to analyze the behavior of some
unit testing techniques were conducted. The first we know
about is from 1978 [1]. Despite we have several years of
empiric research on the matter, we do not have definite results
yet.

In [2] the authors examine different experiments on software
testing: [3], [4], [5], [1], [6], [7], [8], [9], [10], finding that:

• It seems that some types of faults are not well suited to
some testing techniques.

• The results vary greatly from one study to another.
• When the tester is experienced

– Functional testing is more effective than coverage
of all program statements, although the functional
approach takes longer.

– Functional testing is as effective as conditional test-
ing and takes less time.

• In some experiments data-flow testing and mutation test-
ing are equally effective.

• In some other experiments mutation testing performed
better than data-flow testing in terms of effectiveness.

• In all the experiments mutation testing was more expen-
sive than data-flow testing.

• Changes of programming languages and/or environments
can produce different results in replications of experi-
ments that are rather old.

• Most programs used in the experiments suffer from at
least one of the following two problems:

– They are small and unusually simple.
– The defects are seeded by the researches instead of

looking for naturally occurring ones.
The authors belive that researchers should publish more infor-
mation not only about the number of faults the technique can
remove but also about the types.

We agree with Moreno in the sense that the programs used
in these experiments are unreal, so we decided to make an
experiment with more real programs attacking both mentioned
problems.

Before an experiment begins, the testers (the subjects who
execute the testing techniques) need previous training. In our
experiment this includes a course on every technique to be
applied, a course on the scripts to be used during execution,
and a training execution of the techniques in a simple program.
The results of this training execution are presented in [11].

Our experiment uses 4 programs that are especially built
for the experiment. The programs are of different types.
We propose a balanced design in which 14 testers test the
programs. Every tester except one tests 3 of the 4 programs,
each program with a different technique. Every program is
tested twice with each technique. Having 5 testing techniques
results on each program being tested 10 times by 10 different
testers. In order to compensate for the effect of the learning on
testing, the design changes the order in which the techniques
are applied by the different testers.

The techniques used in the experiment are: desktop inspec-
tion, equivalence partitioning and boundary-value analysis, de-
cision table, linearly independent path, and multiple condition
coverage. This is the first formal experiment we know about
that uses decision table, linearly independent path and multiple
condition coverage techniques. The statistical results show
that decision table and equivalence partitioning techniques are
more effective than linearly independent path technique.

The article is organized as follows. Section II briefly de-
scribes the techniques used in the experiment. In section III
the taxonomies used to classify the defects are presented. The
testers follow specific scripts that provide them with them

with guidance which are presented in section IV. Section V
focuses on the Java programs that are verified by the testers.
The experiment design is presented in section VI. In section
VII the experiment execution is presented. The results obtained
are presented in section VIII and the conclusions in section
IX.

II. THE TECHNIQUES

We use the same terminology for the verification techniques
as Swebok [12]. The techniques can be divided into different
types: static, tester intuition or experience, specification based,
code based, fault based and usage based. At the same time
code-based is divided into control flow and data flow based
criteria.

In our experiment we used 5 testing techniques: desk-
top inspection, equivalence partitioning and boundary-value
analysis (EP), decision table (DT), linearly independent path
(LIP), and multiple condition coverage (MCC). Using these
techniques, the static, specification-based techniques types as
well as control-flow ones are covered. Usually equivalence
partitioning and boundary-value analysis are considered as two
separate techniques. Given they are generally used together,
they are considered as one technique in the experiment.

The inspection technique consists of examining the code to
find defects. A check-list is used in order to formalize the
inspection. The tester considers the items in the check-list
one by one and checks the code to find a defect associated
with the current item. The check-list used in our experiment
is presented in the Appendix.

The EP and DT techniques are specification-based ones.
Those techniques divide the entrance domain of a program
into classes based on the specified behavior of the program,
unit or system under test. The techniques are different but the
main concept is similar: to divide the entrance into “meta-
test cases” and then choose one test case for each meta-test
case. In order to develop the test cases the tester only uses the
specification of the program. In other words, the tester does
not use the code of the program during test development. This
is the reason why this kind of techniques is also called black-
box testing techniques. The tester executes functions of the
“black-box” and compares the expected result of the test case
with the result obtained in the test case execution.

The LIP and MCC techniques are control flow based
techniques. The LIP technique divides the control flow of the
program into linearly independent paths. The tester analyzes
the code to find those paths. After this step, the tester develops
a set of test data, which ensures the execution of the linearly
independent paths previously found. Once the tester gets the
set of test data, he reads the specification to add the expected
result to each test data, obtaining with this method the test
cases.

The MCC technique criteria determines that every condition
combinations of each decisions of the code must be executed
with the set of test cases. Using only the source code, the tester
first developed the set of test data that covers the criteria. After
that, the proceeding is the same as in LIP technique, which

is to add the expected results to the set of test data using the
specification of the program.

These techniques are defined in several basic software en-
gineering books and basic software testing books, a complete
explanation of them is beyond the scope of this paper.

We could not find literature describing experiments in which
DT, LIP and MCC techniques are applied, neither could Juristo
[13]. Given so, our experiment and the corresponding empiric
results, are the first ones that involve these techniques.

III. DEFECT TAXONOMIES

Since our objective is to find the effectiveness of the
techniques according to defect types, a defect taxonomy is
necessary. Various defect taxonomies are presented in the
literature. The IBM Orthogonal Defect Classification (ODC)
is the most used [14]. Other taxonomy of interest is Beizer’s
Defect Taxonomy [15].

ODC allows the defects to be classified in many orthogo-
nal views: defect removal activities, triggers, impact, target,
defect type, qualifier, age and source. In this experiment
only the defect type and the qualifier are considered. The
defect type can be one of the following: assign/init, checking,
algorithm/method, function/class/object, timing/serial, inter-
face/O.O. messages and relationship. The qualifier can be:
missing, incorrect or extraneous. Therefore, every defect must
be classified in both views; for example, a defect could be
classified as “timing/serial incorrect”.

Beizer’s taxonomy is hierarchical meaning that each cate-
gory is divided into sub-categories and so on. For example, the
category number 3 is “Structural bugs” and is divided into 3.1
“Control flow and sequencing” and 3.2 “Processing”. Category
3.1 is divided into other several sub-categories. This taxonomy
presents a lot of different defect types, so it may be interesting
to use it. By doing this, our knowledge about the effectiveness
of the techniques by defect type will be highly improved.

We are developing and executing experiments at the same
time that we are conducting a research on defect taxonomy.
We are not convinced that Beizer’s taxonomy or ODC are
the best taxonomies for unit defects. Some initial results are
presented in [16].

IV. SCRIPTS

The testers follow scripts that provide them with guidance,
which allows them to execute the technique and correctly
collect and record the data required for the experiment. There
are 3 scripts, one for each type of technique used: static,
specification-based and control-based. The static script con-
sists of three phases: preparation, execution and finish. The
specification-based and control based scripts have four phases:
preparation, design, execution and finish.

After the preparation phase the tester is ready to start the
verification job. In this phase the tester must prepare the testing
environment and all the necessary material in order to start the
testing. This phase consists of the following steps:

• Download the files related to the program to be verified:
specification, design, javadoc and the source code.

• Record the starting date and hour of the work.
• Read and understand the functional specification of the

program.
• Prepare the environment for the testing (only applies for

the dynamic techniques).
In the design phase (only for dynamic techniques) the tester

develops test cases that achieve the testing technique criteria.
This phase is based on the following steps:

• Design of test cases that satisfy the technique.
• Codify the test cases in JUnit.
• Record the total time spent in designing and codifying

the test cases.
• If some defects are found during design, the tester must

register them. The detection time in this case is zero.
During execution, the test cases are executed (or the in-

spection is executed) and the tester searches for the defects of
those cases that fail. According to this phase, the steps are the
following:

• Execution of the test cases or execution of the inspection.
• Record the defects that are found during the testing. In

the case of inspection technique the time to find the defect
is always zero.

In the last phase, the finish, the tester ends the job and
records the finishing date and hour. In every phase the tester
has to register the time elapsed during the activities and every
defect found.

V. THE PROGRAMS

We use 4 programs in the experiment, each of which is
developed especially for this experiment. These programs
differ from the ones found in the experiment literature in two
aspects. First, the defects in the programs are not injected
by the researchers. Second, the programs are more real and
more complex. Given we are considering unit testing instead
of system testing, the programs are real enough for our
experiment.

These are different types of programs and all are codified
in Java. We classify them as

• Accountancy with data base (Accountancy).
• Mathematic.
• Text processor (Parser).
• Document creation from data in a data base (Doc DB).
The accountancy program is a small salary liquidation

program. The program has the following functionalities:
• Add, modify and delete an employee. The employees

have a position in the organization and hours worked per
week.

• Add, modify and delete positions in the organization. The
positions have a base salary.

• Increase the salary (in different forms) of a position.
• Calculate the salary liquidation.

The database used for this program is HSQLDB1.

1http://hsqldb.org/

TABLE I
MEASURES OF THE PROGRAMS

Program LOCs Meth. LOCs #Cl. #Met. #Def.
accountancy 1979 1497 14 153 107
Mathematic 468 375 13 29 50
Parser 828 634 10 64 272
Doc DB 566 362 10 61 32

The mathematic program receives two arrays of real num-
bers of the same size: x1 . . . xn and y1 . . . yn, and a real
number xk. The program calculates the following items:

1) The mathematical correlation between the arrays. The
correlation determines the relationship between two or-
dered sets of numbers.

2) The significance of the correlation.
3) The parameters of the linear regression, β0

and β1, for the pairs of numbers of the form
(x1, y1) , (x2, y2) , . . . , (xn, yn). The linear regression is
a way of approximating a straight line to a set of points.
The equation of the straight line is: y = β0 + β1x.

4) The result yk of using xk with the straight line equation:
yk = β0 + β1xk.

5) The prediction interval of 70% for the value xk.
The parser program is a small text processor. The parser

recognizes a small set of Pascal language. The program
receives a file with a program written in Pascal. It parses the
code and produces a XML file that presents the structures that
are recognized in the code.

The doc db program generates a multiple choice exam from
data in a data base. The questions in the exam are chosen
at random. The document is a Latex one that contains the
questions, the possible answers and the correct one. The data
base used for this program is HSQLDB.

Table I shows some measures for the four programs. The
columns are the locs without comments, executable locs
without comments (method locs), the number of classes, the
number of methods and the number of defects in the program.

We developed a framework to compare formal experiments
and we used it to compare four experiments [17]. Unfortu-
nately, some experiments are not described enough in the
articles in which are presented. However, we can compare locs
and defects. In [6], Basili and Selby (BS) used four programs.
The smallest of 145 locs and the biggest of 365 locs. The
programs have 34 defects in total. In [18], Macdonald and
Miller (MM) used two programs. One of 143 locs and the
other of 147. Each program has 12 defects. In [19], Juristo
and Vegas (JV) used four programs, each of them with 200
locs and 9 defects.

All these experiments have defects injected by the re-
searchers. In BS some defects are injected while some are
not. In JV all the defects are injected. In MM it is not clear
how many of the defects are injected.

Our programs are considerably bigger and more complex.
Actually, we do not inject defects on them, so the defects
are those introduced during the development. Therefore, our

programs are more real.
As an example, Figure 1 presents the design of the Math-

ematic program. The name of the classes and methods are in
Spanish.

Given we do not inject the defects we must define a
way to find them. Some individuals from our research group
performed testing on the programs and recorded the defects
found. During the experiment 14 students tested the programs
with different techniques. We consider that the union of the
sets of the defects found are an excellent estimation of the
defects of the programs.

VI. EXPERIMENT DESIGN

The objective of the experiment is to study 5 testing tech-
niques in order to evaluate their effectiveness and cost when
used in unit testing. The techniques are: desktop inspection,
equivalence partitioning and boundary-value analysis, decision
table, linearly independent path, and multiple condition cover-
age. The effectiveness is defined as the percentage of defects
found by a technique. The cost is the time that takes to execute
a technique.

The type of our experiment design is one factor with mul-
tiple levels. The factor is testing technique and the levels are
the 5 different techniques. There are 14 subjects (the testers)
and 4 experimental units (the programs). The independent
(response) variables are: the defects found and the time
elapsed during the technique execution.

Table II shows the design of the experiment. For each of
the four programs the table presents the testers who test these
programs and the techniques used. Represented by numbers
from 1 to 3, is the order in which a tester tests these programs;
1 is the first program tested by the tester and 3 corresponds
to the last one. For example, tester number one tests the
accountable program with inspection technique first, then tests
the mathematic program with the MCC technique and the
last program he tests is the data base program with the LIP
technique.

The design has the following characteristics:
• It is a balanced design.
• Each technique is used 8 times.
• Each program is tested 10 times.
• Each program is tested 2 times for each technique.
• Each technique is applied 8 times.
• Every tester except one tests 3 different programs with 3

different techniques.
• Only one technique is used in a program by a tester.

Therefore, the testers never test the same program twice,
which avoids the learning of the defects on the program.

• In order to compensate for the effect of learning on test-
ing, the design changes the order in which the techniques
are applied by different testers.

• The assignment of the set of techniques and programs
previously defined in the design to the testers is com-
pletely at random.

The subjects are students in the 4th and 5th year of the
Computer Engineering career thus we consider them to have

an equal experience in testing.

VII. EXPERIMENT EXECUTION

The execution consists of three phases: courses phase,
training phase and test phase. The courses phase and the
training phase prepare the testers to execute the techniques
and the scripts correctly. In the test phase the design of the
experiment is executed.

The testers participate in 7 different courses during the
courses phase. Every course takes around 2 hours of class.
The courses present the techniques to be used, the scripts and
the tool to record the data.

The training phase is a small experiment on its own [11]. In
this phase the testers test a small program and record the data
in the same way they will do in the test phase. This serves
to assure they are executing the techniques correctly and that
they are recording the data as expected.

The last phase is the execution of the design. The testers get
the program one at a time. When a tester finishes the execution
of a technique in a program the researchers gives him another
program to test.

During execution some testers abandon the experiment. This
clearly impacts on the design and some properties described
are not longer valid. For example, various properties of the
design, mainly regarding the balance, do not hold. However,
we can do a statistical analysis of the data.

VIII. ANALYSIS OF THE RESULTS

Due to the execution problems that arose, we have different
number of samples for each technique. Table III shows every
unitary experiment executed in the experiment. Each row in the
table shows the defects found and the effectiveness of a tester
testing a program with a technique. The total defects of each
program was presented in table I. Remember that we define
effectiveness as the percentage of defects founds divided by
the total defects.

Table IV presents the effectiveness grouped by technique.
This data is used for the descriptive statistics and for the
hypothesis testing.

Table V shows the observations quantity, average and stan-
dard deviation of the effectiveness of each technique. It seems
like DT and Insp technique are more effective than the rest
of the techniques while LIP technique is the less effective.
The standard deviation could be considered as high so it is
probably that we need more observations. This can be obtained
by replication of the experiment.

Due to the few observations we have, we can not make
an analysis about the effectiveness by defect type. Therefore,
it is only presented de total effectiveness of each technique.
The null hypothesis (H0) is that every technique has the same
effectiveness. The alternative hypothesis (H1) is that at least
exists a technique with different effectiveness from the others.

Due to the few observations it is not very reliable to apply
a parametric test. So, we decide to use a non parametric test:
Mann-Whitney test. We compare all the couples of techniques.

Fig. 1. Design of the Mathematic Program

TABLE II
THE EXPERIMENT DESIGN

Contabilidad Matemtico MO-Latex Parser

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

In
s

C
C

C
M

T
L

I

PE
yA

V
L

T
D

tester 1 1 2 3
tester 2 2 3 1
tester 3 3 1 2
tester 4 1 2 3
tester 5 1 2 3
tester 6 2 3 1
tester 7 3 1 2
tester 8 1 2 3
tester 9 1 2 3
tester 10 2 3 1
tester 11 3 1 2
tester 12 1 2 3
tester 13 1 2 3
tester 14 1

This gives 10 different null and alternative hypothesis. For
example, one is the EP and LIP hypothesis:

H0EP−LIP
: µEP = µLIP (1)

H1EP−LIP
: µEP 6= µLIP (2)

The results of the Mann-Whitney test are presented in table
VI. The columns presents: the techniques to compare, the sta-
tistical U, the the quantities of observation for both techniques
that are being compared and the probability associated.

This results shows that we can only reject two null hypothe-
ses:

H0LIP−DT
: µLIP = µDT .

H0LIP−EP
: µLIP = µEP .

The rejection of the LIP-DT hypothesis is with an α of
1,1% and the rejection of the LIP-EP is with an α of 9%.
We can conclude that for our programs it seems that using
EP technique is more effective than using LIP technique and
that using DT technique is also more effective than using LIP
technique. This has to be validated with replications of this
experiment or by executing other different experiments.

IX. CONCLUSIONS

We present a formal experiment to evaluate testing tech-
nique. One of the contributions is to have 4 programs that are
specially designed for these experiments. These programs are
bigger than other used in similar experiments and the defects

TABLE III
EFFECTIVENESS FOR EACH UNITARY EXPERIMENT

Program Technique # Def. Found % Effectiveness
Accountancy MCC 3 2.80
Accountancy MCC 7 6.54
Accountancy DT 44 41.12
Accountancy DT 9 8.41
Accountancy EP 21 19.63
Accountancy Insp 5 4.67
Accountancy Insp 7 6.54
Accountancy LIP 8 7.48
Mathematic MCC 5 10
Mathematic MCC 3 6
Mathematic DT 4 8
Mathematic EP 12 24
Mathematic EP 7 14
Mathematic Insp 8 16
Mathematic Insp 23 46
Mathematic LIP 4 8
Mathematic LIP 4 8
Parser MCC 116 42.65
Parser MCC 42 15.44
Parser DT 77 28.31
Parser DT 32 11.76
Parser EP 41 15.07
Parser EP 5 1.84
Parser Insp 46 16.91
Parser Insp 10 3.68
Parser LIP 5 1.84
Doc DB MCC 1 3.13
Doc DB MCC 12 37.5
Doc DB DT 6 18.75
Doc DB DT 8 25
Doc DB EP 4 12.5
Doc DB EP 1 3.13
Doc DB Insp 0 0
Doc DB Insp 19 59.38
Doc DB LIP 3 9.38
Doc DB LIP 3 9.38

TABLE IV
EFFECTIVENESS GROUPED BY TECHNIQUE

MCC Insp EP DT LIP
3.13 0 12.5 18.75 9.38
37.5 59.38 3.13 25 9.38
2.80 6.54 19.63 41.12 7.48
6.54 4.67 14 8.41 8
10 16 24 8 8
6 46 15.07 28.31 1.84

42.65 16.91 1.84 11.76 -
15.44 - - 3.68 -

TABLE V
AVERAGE AND STANDARD DEVIATION OF THE EFFECTIVENESS

MCC Insp EP DT LIP
Observations Quantity 8 8 7 7 6
Average 15.51 19.15 12.88 20.19 7.35
Standard Deviation 15.75 21.81 8.09 12.16 2.81

are not injected by the researches. These characteristic are the
ones that Juristo et al complain about.

Although the execution of the experiment differs from
the initial balanced design, we consider that we obtain two
interesting results. The first one is that this work presents the

TABLE VI
MANN-WHITNEY TEST

U Mann-Whitney (n1;n2) P(U>x)
DT vs. MCC 18.0 (7;8) 0.140
EP vs. MCC 27.5 (7;8) 0.522
Insp vs. EP 26.0 (8;7) 0.389
Insp vs. MCC 28.5 (8;8) 0.360
LIP vs. MCC 20.0 (6;8) 0.331
LIP vs: Insp 21.0 (6;8) 0.377
EP vs. DT 17.0 (7;7) 0.191
Insp vs. DT 20.0 (8;7) 0.198
LIP vs. DT 5.0 (6;7) 0.011
LIP vs. EP 10.5 (6;7) 0.090

first formal experiment that uses DT, LIP and MCC testing
techniques. The second one is that we can reject two null
hypotheses. This means that it seems like DT and EP are more
effective than LIP. Further experiments are needed to validate
these results.

As future work we pretend to design another experiment
using different techniques. One is running at this moment with
sentence coverage and all uses techniques. We also want to
run other experiment with more testers so we can get more
observations, with these observations maybe we can reject
more effectiveness hypotheses, make some conclusions about
the cost of the techniques and make hypotheses that evaluate
effectiveness considering the different types of defects.

Acknowledgment
The authors would like to thank Lorena Ibaceta and
Fernanda Grazioli for their helpful comments on this article.
This work is partially supported by the Programa de
Desarrollo de las Ciencias Básicas (PEDECIBA), Uruguay.

APPENDIX

1) leave an space
• Are descriptive variable and constant names used in

accord with naming conventions?
• Are there variables or attributes with confusingly

similar names?
• Is every variable and attribute correctly typed?
• Is every variable and attribute properly initialized?
• Could any non-local variables be made local?
• Are all for-loop control variables declared in the

loop header?
• Are there literal constants that should be named

constants?
• Are there variables or attributes that should be

constants?
• Are there attributes that should be local variables?
• Do all attributes have appropriate access modifiers

(private, protected, public)?
• Are there static attributes that should be non-static

or vice-versa?
2) leave an space

• Are descriptive method names used in accord with
naming conventions?

• Is every method parameter value checked before
being used?

• For every method: Does it return the correct value
at every method return point?

• Do all methods have appropriate access modifiers
(private, protected, public)?

• Are there static methods that should be non-static
or vice-versa?

3) leave an space
• Does each class have appropriate constructors and

destructors?
• Do any subclasses have common members that

should be in the superclass?
• Can the class inheritance hierarchy be simplified?

4) leave an space
• For every array reference: Is each subscript value

within the defined bounds?
• For every object or array reference: Is the value

certain to be non-null?
5) leave an space

• Are there any computations with mixed data types?
• Is overflow or underflow possible during a compu-

tation?
• For each expressions with more than one operator:

Are the assumptions about order of evaluation and
precedence correct?

• Are parentheses used to avoid ambiguity?
6) leave an space

• For every boolean test: Is the correct condition
checked? Is each boolean expression correct?

• Are the comparison operators correct?
• Has each boolean expression been simplified by

driving negations inward?
• Are there improper and unnoticed side-effects of a

comparison?
• Has an “&” inadvertently been interchanged with a

“&&” or a “|” for a “||”?
7) leave an space

• For each loop: Is the best choice of looping con-
structs used?

• Will all loops terminate?
• When there are multiple exits from a loop, is each

exit necessary and handled properly?
• Does each switch statement have a default case?
• Are missing switch case break statements correct

and marked with a comment?
• Do named break statements send control to the right

place?
• Is the nesting of loops and branches too deep, and

is it correct?
• Can any nested if statements be converted into a

switch statement?
• Are null bodied control structures correct and

marked with braces or comments?

• Are all exceptions handled appropriately?
• Does every method terminate?

8) leave an space
• Have all files been opened before use?
• Are the attributes of the input object consistent with

the use of the file?
• Have all files been closed after use?
• Are there spelling or grammatical errors in any text

printed or displayed?
• Are all I/O exceptions handled in a reasonable way?

9) leave an space
• Are the number, order, types, and values of param-

eters in every method call in agreement with the
called method’s declaration?

• Do the values in units agree (e.g., inches versus
yards)?

• If an object or array is passed, does it get changed,
and changed correctly by the called method?

REFERENCES

[1] G. J. Myers, “A controlled experiment in program testing and code
walkthroughs/inspections,” Communications of the ACM, vol. 21, no. 9,
pp. 760–768, September 1978.

[2] A. Moreno, F. Shull, N. Juristo, and S. Vegas, “A look at 25 years of
data,” IEEE Software, vol. 26, no. 1, pp. 15–17, Jan.–Feb. 2009.

[3] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions
on Software Engineering, vol. 19, no. 8, pp. 774–787, Aug. 1993.

[4] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the
effectiveness of dataflow- and control-flow-based test adequacy criteria,”
in Proc. ICSE-16. th International Conference on Software Engineering,
16–21 May 1994, pp. 191–200.

[5] P. G. Frankl and O. Iakounenko, “Further empirical studies of test
effectiveness,” ACM SIGSOFT Software Engineering Notes, vol. 23,
no. 6, pp. 153–162, November 1998.

[6] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software
testing strategies,” IEEE Transactions on Software Engineering, vol. 13,
no. 12, pp. 1278–1296, Dec. 1987.

[7] E. Kamsties and C. M. Lott, “An empirical evaluation of three defect-
detection techniques,” in Proceedings of the Fifth European Software
Engineering Conference, 1995, pp. 362–383.

[8] M. Wood, M. Roper, A. Brooks, and J. Miller, “Comparing and
combining software defect detection techniques: a replicated empirical
study,” ACM SIGSOFT Software Engineering Notes, vol. 22, no. 6, pp.
262–277, 1997.

[9] A. P. Mathur and W. E. Wong, “Fault detection effectiveness of mutation
and data flow testing,” Software Quality Journal, vol. 4, pp. 69–83, 1995.

[10] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mutation testing:
An experimental comparison of effectiveness,” The Journal of Systems
and Software, vol. 38, pp. 235–253, 1997.

[11] D. Vallespir and J. Herbert, “Effectiveness and cost of verification
techniques: Preliminary conclusions on five techniques,” in Proceedings
of the Mexican International Conference in Computer Science, IEEE-
Computer-Society, Ed., 2009.

[12] IEEE/ACM, Software Engineering Body of Knowledge: Iron Man Ver-
sion, May 2004.

[13] N. Juristo, A. Moreno, S. Vegas, and M. Solari, “In search of what we
experimentally know about unit testing,” IEEE Software, vol. 23, no. 6,
pp. 72–80, November 2006.

[14] R. Chillarege, Handbook of Software Reliability Engineering - Chapter
9. Mcgraw-Hill, April 1996, ch. 9: Orthogonal Defect Classification.

[15] B. Beizer, Software Testing Techniques, 2nd ed. Van Nostrand Reinhold,
June 1990.

[16] D. Vallespir, F. Grazioli, and J. Herbert, “A framework to evaluate defect
taxonomies,” in Proceedings of the XV Argentine Congress on Computer
Science, 2009.

[17] D. Vallespir, S. Moreno, C. Bogado, and J. Herbert, “Towards a
framework to compare formal experiments that evaluate verification
techniques,” in Proceedings of the Mexican International Conference
in Computer Science, 2009.

[18] F. Macdonald and J. Miller, “A comparison of tool-based and paper-
based software inspection,” Empirical Software Engineering, vol. 3,
no. 3, pp. 233–253, 1998.

[19] N. Juristo and S. Vegas, “Functional testing, structural testing, and code
reading: What fault type do they each detect?” Empirical Methods and
Studies in Software Engineering, vol. 2765/2003, pp. 208–232, 2003.

