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Abstract

Sparse data models, where data is assumed to be well represented as a linear combi-

nation of a few elements from a learned dictionary, have gained considerable attention in

recent years, and their use has led to state-of-the-art results in many applications.

The success of these models is largely attributed to two critical features: the use of spar-

sity as a robust mechanism for regularizing the linear coefficients that represent the data,

and the flexibility provided by overcomplete dictionaries that are learned from the data.

These features are controlled by two critical hyper-parameters: the desired sparsity of the

coefficients, and the size of the dictionaries to be learned. However, lacking theoretical

guidelines for selecting these critical parameters, applications based on sparse models of-

ten require hand-tuning and cross-validation to select them, for each application, and each

data set. This can be both inefficient and ineffective. On the other hand, there are mul-

tiple scenarios in which imposing additional constraints to the produced representations,

including the sparse codes and the dictionary itself, can result in further improvements.

This thesis is about improving and/or extending current sparse models by addressing

the two issues discussed above, providing the elements for a new generation of more pow-

erful and flexible sparse models. First, we seek to gain a better understanding of sparse

models as data modeling tools, so that critical parameters can be selected automatically,

efficiently, and in a principled way. Secondly, we explore new sparse modeling formula-

tions for effectively exploiting the prior information present in different scenarios. In order

to achieve these goals, we combine ideas and tools from information theory, statistics, ma-

chine learning, and optimization theory. The theoretical contributions are complemented

with applications in audio, image and video processing.
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1 Introduction

A sparse model is one in which signals of a given type y ∈ Rm can be represented ac-

curately as sparse linear combinations of the columns dk (atoms) of a dictionary D =

[d1|d2| . . . |dp] ∈ Rm×p,

y= Da+ e,

where by accurate we mean that the model approximation error is small, i.e., ‖e‖ �




y






(in some norm), and by sparse we mean that the number of non-zero elements in the linear

coefficients vector a ∈ Rp, denoted by ‖a‖0, is small compared to its dimension p. This

concept is depicted in Figure 1.1.

Such models have been used for decades in a variety of applications. Early examples

include dimensionality reduction techniques such as Principal Component Analysis (PCA)

(Figure 1.3b), or transform-based signal coding (see Figure 1.2). However, it was only

recently, with the introduction of learned overcomplete dictionaries [1, 2, 3, 4], a mathe-

matical formalization of sparse decompositions as representations of data [5, 6, 7], and

the advent of powerful special-purpose optimization algorithms for computing such de-

compositions [8, 9, 10, 11, 12], that the full power of sparse models seems to have been

harnessed, leading to state-of-the-art results in many signal and image processing tasks,

e.g., [13, 14, 15, 16]. We refer the reader to [17, 18, 19] for recent reviews on the subject.

These recent results and experimentation, where sparsity and overcompleteness are

the main driving concepts behind the studied models, comprise what we call the “first

generation sparse models.”

1
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Figure 1.1: Sparse data model for samples y ∈ Rm based on a dictionary with p atoms.

When sparsity is a modeling device and not an hypothesis about the nature of the an-

alyzed signals, parameters such as the desired sparsity in the solutions, or the size p of the

dictionaries to be learned, play a critical role in the effectiveness of sparse models for the

data and tasks at hand. However, lacking theoretical guidelines for such parameters, pub-

lished applications based on learned sparse models often rely on either cross-validation or

ad-hoc methods for determining such critical parameters (an exception for example being

the Bayesian approach, e.g., [20]). Clearly, such techniques can be impractical and/or in-

effective in many cases. This in turn hinders the further application of such models to new

types of data and applications, or their evolution into different, possibly more sophisticated,

models.

This thesis is about gaining a better theoretical understanding of sparse models based

on learned dictionaries of arbitrary size, and extending and/or improving these models by

incorporating more prior information in the specific problems to be solved. More specifi-

cally, the main questions driving this work are, in order of relevance:

Q1 If the size p of the dictionary and the sparsity level γ (upper bound on ‖a‖0) are both

unknowns to be learned from the data, how does one define an objective criterion for

selecting such critical parameters?
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Q2 How do we add robustness to the process of fitting or learning a sparse model to

data?

Q3 How does one incorporate more prior information besides sparsity to enhance the

representations? Examples of this are observed empirical distributions of the coef-

ficients a, frequency of different atoms in the dictionary D, dependencies between

atoms representing the same sample or between different data samples.

Q4 How good are sparse representation coefficients as features or patterns representing

observed data, for example, in machine learning or pattern recognition/classification

tasks?

In order to answer such questions, this work focuses on the use of tools from informa-

tion theory, and in particular, from universal coding [21] and Rissanen’s Minimum Descrip-

tion Length (MDL) principle [22, 23]. We complement this with other tools and techniques

such as compressive sensing and machine learning, to aid in the exploration of structural

aspects of sparse models, and their applications for example to classification tasks.

The rest of this chapter introduces traditional sparse models and the associated no-

tation used throughout this document (with the exception of the appendixes, which are

self-contained). The exposition of the work itself is described in the two chapters follow-

ing this introduction. Chapter 2 explores questions Q3-Q4 (and, to some extent, Q2) from

a “traditional point of view”, that is, via modifications to the sparse coding and dictio-

nary learning formulations, assessing their effect in various applications. The chapter gives

a summary of the work done on this subject, leaving technical details, as well as the com-

plete experimental results, to appendixes A and B. Chapter 2 also serves to further highlight

some of the issues related to this traditional approach. In particular, the critical effect of

choosing the right coding and learning parameters is aggravated as new terms are added

to the cost functions, as each one adds one (or more) new parameter(s) that need(s) to be
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(a) A picture of my son, Joaquin (b) Its Discrete Wavelet Trans-
form (DWT)

(c) First 105 DWT coefficients sorted
by absolute value.

Figure 1.2: Sparse representation example.

tuned. Nevertheless, with properly chosen parameters, we show how such carefully cho-

sen reformulations of the sparse modeling problem can lead to significant improvements in

their application to challenging problems such as source separation (see Appendix B).

Chapter 3 deals with questions Q1-Q2 using the information-theoretic tools mentioned.

As such, a brief introduction to such tools is provided, with focus on their practical imple-

mentation. Then, the main results obtained towards answering such questions are summa-

rized, again leaving the technical details to the associated appendixes C through E.

The document is concluded in Chapter 4, summarizing the main results, the open ques-

tions that arose along the way, and the future lines of work suggested by such questions.

1.1 Sparsity and sparse coding

Depending on the application, the sparsity assumption can be justified from many points

of view. For example, it is known that DCT or wavelet representations of natural images

concentrate most of the energy of the signals in very few coefficients (see Figure 1.2).

Those examples were an inspiration for the recent development of compressive sensing

theory [7]. In statistics, sparsity is an important tool in model selection (determining the

relevant factors affecting given observed phenomena, for example the incidence of a given



5

disease in a population), and also in model fitting, where `1 regularization is often preferred

over the traditional `2 (Ridge) regression [24]. In machine learning applications, sparse

models have also proved useful, for example in classification tasks (see for example [14,

25, 26]).

We define the support, or active set, of a vector a ∈ Rp as supp(a) =
�

k : ak 6= 0
	

.

Let Γ = supp(a). We use the pseudo-norm ‖a‖0 := |Γ| to denote the number of non-zero

elements of a. The sparse coding problem can be formulated in different ways, depending

on the application. For example, one may request the sparsest possible representation of a

data sample y ∈ Rm up to a pre-specified distortion,

â=arg min
u∈Rp
‖u‖0 s.t.





y−Du






2 ≤ ε, . (1.1)

This type of formulation is usually seen when sparsity is an assumption about the data,

for example, in compressive sensing [7]. When sparsity is an explicit model constraint, a

formulation such as the following one may be used,

â=arg min
u∈Rp





y−Du






2 s.t. ‖u‖0 ≤ γ, (1.2)

where γ � p indicates the desired sparsity level of the solution. In the statistics field of

model selection [22, 27, 28], a Lagrangian form is used which provides a compound cost

function that can be used to compare different competing models,

â=arg min
u∈Rp





y−Du






2
2+λ‖u‖0 . (1.3)

Since problems (1.1)–(1.3) are non-convex and NP-hard, approximate solutions are

sought. This is done either by using greedy methods such as Matching Pursuit (MP) [29], or

by solving convex approximations to (1.1)–(1.3). For example, the convex approximation
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to (1.2), commonly known as the lasso [24], is given by

â= arg min
u∈Rp

1

2





y−Du






2 s.t. ‖u‖1 ≤ τ, (1.4)

which is also usually found in unconstrained (Lagrangian) form

â= arg min
u∈Rp

1

2





y−Du






2
2+λ‖u‖1 , (1.5)

which in turn is a convex approximation to (1.3). There exists a body of results showing

that, under certain conditions on γ and D, problems (1.1)–(1.3) can be solved exactly via

their convex approximations or by using greedy algorithms such as MP (see for example [6,

7, 17]). In other cases, the objective is not to solve (1.2)–(1.3), but to guarantee some

property of the estimated coefficients â. An example of this is the SURE estimator [30].

A recent generalization of this idea, the GSURE, is developed in [31]. However, if D is

arbitrary, no such choice exists. Also, if D is orthonormal, the problem (1.4) admits a

closed form solution obtained via the so-called soft thresholding operator [30]. However,

again, for general D, no such solution exists, and the search for efficient algorithms has

been a hot topic recently, e.g., [9, 10, 11, 12].

1.2 Learning overcomplete dictionaries

Another key component in modern sparse modeling applications is the use of learned, pos-

sibly overcomplete dictionaries. By overcomplete we mean that the atoms in the dictionary

form a redundant basis (i.e., linearly dependent, spanning the whole space). The use of

non-overcomplete, learned dictionaries can be traced back to PCA [32] (Figure 1.3b). On

the other hand, the introduction of overcomplete, pre-designed, dictionaries for image pro-

cessing represented a breakthrough in the field, for example in image restoration, e.g. [33].
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(a) DCT basis. (b) PCA decomposition of the
image in Figure 1.2a.

(c) Overcomplete dictionary
learned for the same image.

Figure 1.3: Example dictionaries for sparsely representing 8×8 image patches.

Combining these two concepts, learned overcomplete dictionaries have provided further

significant improvements in these applications, e.g. [4]. Figure 1.3c shows an overcom-

plete dictionary which was learned for representing the image in Figure 1.2a using the

algorithms described in Chapter 3.

Assuming that the parameter p is fixed, the problem of learning a dictionary from given

data samples (ordered as columns of a matrix Y = [y1|y2| . . . |yn] ∈ Rm×n) can be formu-

lated as follows,

(Â, D̂) = argmin
A,D

n
∑

j=1

1

2





y j −Da j







2
2 s.t.





a j







r ≤ τ, ∀ j,




dk







2 ≤ 1, ∀k, (1.6)

with 0 ≤ r ≤ 1. The constraint




dk







2 ≤ 1 , k = 1, . . . , p, is necessary to avoid an arbitrary

decrease of the cost function by setting D← αD, A← 1
α

A, for any α > 1. The cost function

in (1.6) is non-convex in (A,D), so that only local convergence can be guaranteed. This is

usually achieved using alternate optimization in D and A. Algorithm 1 shows an example

of this technique. We refer the reader to [4, 18, 19, 34] for other variants of this traditional

approach. In any case the dictionary size p is a critical parameter that needs to be tuned to

the particular data and application for which the model is learned.
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Algorithm 1: Traditional dictionary learning.

Input: Data Y, initial dictionary D0, multiplier λ, tolerance ε, regularizer ε
Output: Local-optimum (Â, D̂)
initialize D(0) = D0, t = 0 ;
repeat

for j = 1, . . . , n do
t ← t + 1 ;
a(t)j ← argminu

1
2





y j −D(t−1)u






2
2+λ‖u‖1 ;

end
for k = 1, . . . , p do

u← 1
(AAᵀ)kk+ε

(DA(t)((A(t))ᵀ)k − Y((A(t))ᵀ)k) ;

d(t)j ←
1

min{1,‖u‖2}
u ;

end

until ‖D
(t)−D(t−1)‖F

‖D(t)‖F
≤ ε ;

Set Â← A(t) ;
Set D̂← D(t) ;

In Algorithm 1, the descent step on A for fixed D is solved for each j-th column of Y

using any of the aforementioned `1 sparse coding algorithms. The descent on D for fixed

A, called dictionary update step, corresponds to a single iteration of a block-coordinate de-

scent (where each block corresponds to an atom) using a scaled projected gradient method,

where the scaling is the diagonalized Hessian of the fitting term w.r.t. to D. Imposing spar-

sity on A has as the side effect that AAᵀ can be very ill-conditioned, often with zeroes along

the diagonal (note that (AAᵀ)kk = 0 if an atom is not used by any sample). Therefore, the

scaling must be regularized as well by adding a regularization term ε > 0 to the diagonal-

ized Hessian, which is formally equivalent to adding the penalty term ε
2
‖D‖2F to the cost

function in (1.6), so that the actual cost function being minimized is

(D̂, Â) = argmin
D,A

n
∑

j=1

1

2





y j −Da j







2
2+λ





a j







1+
ε

2
‖D‖2F , s.t.





dk







2 ≤ 1 , k = 1, . . . , p,

(1.7)
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As with the other parameters, the choice of ε is critical to the success of the learning al-

gorithm in producing a good model for the given data. As mentioned, dealing with such

parameters in a principled and automatic way, as well as defining alternative ways of regu-

larizing and robustifying the dictionary learning process, is the main subject of this thesis,

which will be developed in the following chapters.



2 Adding structure to sparse models

The sparsity constraint has proved to be a powerful device for robustifying the represen-

tation of signals. This, together, with the flexibility of learned dictionaries, has provided

breakthroughs in many signal processing applications. However, there are multiple scenar-

ios in which imposing additional constraints to the produced representations, including the

sparse codes and the dictionary itself, can result in further improvements.

This chapter summarizes our results and developments in this line of work, which span

the publications [35, 36, 37, 38], reproduced here in appendixes A–D respectively. While

the work described in Appendix B deals exclusively with adding structure to the sparse

codes, appendixes A, C and D approach the issue of adding structure to the dictionaries in

different ways. This division is reflected in the structure of the remainder of this chapter.

2.1 Structured sparse coding

Besides requiring sparse solutions, the need to add further constraints to the sparse codes

arises in several scenarios. We refer to structured sparse coding when additional constraints

are imposed on the possible supports of the sparse codes [39, 40]. When prior information

about the problem allows one to impose such constraints, the resulting sparse representa-

tions are often more stable and robust than the ones provided by traditional formulations

such as (1.4). One example is the Group Lasso [39], which generalizes the Lagrangian for-

mulation of Lasso [24] by imposing sparsity to groups of coefficients (meaning that only a

few groups of coefficients may contain non-zero coefficients– within the groups, no sparsity

10
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Figure 2.1: Group-sparse data model. Several data samples (columns of the matrix Y) are here
encoded using group-sparse codes (columns of the matrix A).

is assumed – see Figure 2.1). Define G = {G1, . . . , Gg} to be a partition of the atom index

set {1, . . . , p}. The problem of encoding a data sample y j from Y via the Group Lasso model

can be stated as follows,

â j = arg min
u∈Rp

1

2





y j −Du






2
2+

g
∑

r=1





u[Gr]







2 ≤ τ. (2.1)

Here the notation u[Gr] indicates the sub-vector whose indexes belong to the index set

Gr . As before, the data samples y j and their corresponding sparse codes a j , j = 1, . . . , n,

are assembled as columns of the data and coefficients matrices Y and A respectively (see

Figure 2.1). For example, in the context of Compressive Sensing, if the sparse vector a j to

be recovered from y j exhibits this kind of group pattern, the original recovery conditions [5,

6, 7, 17] can be significantly relaxed [41, 42, 43, 44].

2.1.1 Hierarchical sparsity

One particular situation where group sparsity is a natural assumption is when one wants

to represent signals y which are a linear mixture of several other signals, y =
∑g

r=1 xr ,
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each of which can be efficiently represented in terms of a corresponding dictionary Dr . Us-

ing this prior information, we expect y to be efficiently encoded in terms of the dictionary

D =
h

D[G1] |D[G2] | . . . |D[Gg]

i

where D[Gr] = Dr . In the setting of Appendix B, the focus

is on the source separation problem, where one wants to estimate each unmixed signal

xr from y (in particular, we were interested in the problem of separating music instru-

ments playing simultaneously during a recording). However, a straightforward application

of Group Lasso here presents us with an inconsistency problem, since the Group Lasso

produces dense representations within each group, (as seen in Figure 2.1), while our dic-

tionaries are trained for representing each xr sparsely. In order to enforce sparsity within

the groups, the regularizers from the Group Lasso and the Lasso are combined, resulting in

the Hierarchical Lasso,

â j = arg min
u∈Rp

1

2





y j −Du






2
2+λ2

g
∑

r=1





u[Gr]







2+λ1 ‖u‖1 . (2.2)

This is complemented with the development of an efficient special-purpose optimization

algorithm for solving problem (2.2), as well as a generalization of the exact recovery condi-

tions for traditional [5, 6, 7, 17] and group sparse coding [41, 42, 43, 44] to the hierarchical

case. These developments, as well as experiments that show the practical benefits of adding

this new formulation, are detailed in Appendix B.

Of course, as with models such as Lasso and Group Lasso, the optimal parameters λ1

and λ2 are application and data dependent. As mentioned in the introduction, we defer

the treatment of this problem (albeit not for the particular case of the Hierarchical Lasso)

to the next chapter.
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Figure 2.2: Sparsity patterns induced by HiLasso (left) and C-HiLasso (right) model selection pro-
grams. Notice that the C-HiLasso imposes the same group-sparsity pattern in all the samples (same
class), whereas the in-group sparsity patterns can vary between samples (samples themselves are
different).

2.1.2 Collaborative hierarchical sparsity

In numerous applications, one expects that the samples y j in Y all share the same active

components from the dictionary, that is, that the indexes of the nonzero coefficients in a j

are the same for all j = 1, . . . , n. Imposing such dependency in the `1 regularized regression

problem gives rise to the so called collaborative (also called “multitask” or “simultaneous”)

sparse coding problem [41, 44, 45, 46]. This model is given by

min
A∈Rp×n

1

2
‖Y−DA‖2F +λ

p
∑

k=1





ak






2, (2.3)

where ak ∈ Rn is the k-Th’s row of A, that is, the vector of the n different values that the

coefficient associated to the k-th atom takes for each sample j = 1, . . . , n. If we now extend

this idea to the Group Lasso, we obtain a collaborative Group Lasso (C-GLasso) formulation,

min
A∈Rp×n

1

2
‖Y−DA‖2F +λ

g
∑

r=1








A[Gr]









F
(2.4)

where A[G] is the sub-matrix formed by all the rows belonging to group G. This regularizer

is the natural collaborative extension of the regularizer in (2.1).

Again, motivated by the case of source (instrument) separation in mixed signals (audio
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Figure 2.3: Texture separation results. Left to right: sample mixture, corresponding C-HiLasso
separated textures, and comparison of the active set diagrams obtained by the Lasso (as in Figure
2.5). The one for Lasso is shown on top, where all groups are wrongly active, and the one for
C-HiLasso on bottom, showing that only the two correct groups are selected.

recordings), the work described in Appendix B takes an additional step, adding collabora-

tive coding to the hierarchical model. The combined model that we propose, C-HiLasso, is

given by

min
A∈Rp×n

1

2
‖Y−DA‖2F +λ2

g
∑

r=1








A[Gr]









F
+λ1

n
∑

j=1





a j







1 . (2.5)

The sparsity pattern obtained using (2.5) is shown in Figure 2.2(right). The C-GLasso is a

particular case of our model when λ1 = 0. On the other hand, one can obtain independent

Lasso solutions for each y j , j = 1, . . . , n by setting λ2 = 0. We see that (2.5) encourages

all the signals to share the same groups (classes), while the active set inside each group

is signal dependent. We thereby obtain a collaborative hierarchical sparse model, with

collaboration at the class level (all signals collaborate to identify the classes), and freedom

at the individual levels inside the class to adapt to each particular signal. A graphical

example of the effectiveness of this modeling approach is shown in Figure 2.3, where we

applied the C-HiLasso model to separate mixtures of two textures. Here Y contains all

12×12 overlapping patches of the mixture texture image.

This new model is also particularly well suited, for example, when the data vectors have

missing components. In this case combining the information from all the samples is very

important in order to obtain a correct representation and model (group) selection. This
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Figure 2.4: Speaker identification results. Each column corresponds to the sources identified for a
specific time frame, the true ones marked by yellow dots. The vertical axis indicates the estimated
activity of the different sources, where darker colors indicate higher energy. For each possible
combination of speakers, 10 frames (15 seconds of audio) were evaluated.

can be done by slightly changing the data term in (2.5) so that only observed elements are

taken into account in the error term,

min
A∈Rp×n

1

2
‖H� (Y−DA)‖2F +λ2

g
∑

r=1








A[Gr]









F
+λ1

n
∑

j=1





a j







1 . (2.6)

where � denotes Schur (element-wise) product, and H is a binary mask which contains

zeroes at the locations of the missing elements. Figure 2.5 shows the results of applying

this model to recover a set of digits from their observed mixtures with 60% of the observed

mixture samples missing, providing evidence on the power of this new modeling approach.

We also applied the C-HiLasso model to the source identification problem, where the

goal is to detect the sources that are active in the observed mixture. In this case the observed

signal is an audio recording, and the sources correspond to different human speakers. The

results are summarized in Figure 2.4. See Appendix B for more details on this and the other

experiments.

As for the HiLasso, we developed efficient algorithms for solving problems (2.5) and

(2.6). Again, details of this are given in Appendix B.
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Figure 2.5: Example of recovered digits (3 and 5) from a mixture with 60% of missing compo-
nents. From left to right: noiseless mixture, observed mixture with missing pixels highlighted in
red, recovered digits 3 and 5, and active set recovered for all samples using the C-HiLasso and Lasso
respectively. In the last two figures, the active sets are represented as in Figure 2.5. The coefficients
blocks for digits “3” and “5” are marked as pink bands. Notice that the C-HiLasso exploits efficiently
the hypothesis of collaborative group-sparsity, succeeding in recovering the correct active groups in
all the samples. The Lasso, which lacks this prior knowledge, is clearly not capable of doing so, and
active sets are spread over all the groups.

2.2 Structured dictionary learning

The only constraint in traditional dictionary learning applications is that their atoms should

have unit norm. As mentioned in Chapter 1.2, this is imposed to avoid an arbitrary decrease

of the cost function by a trivial rescaling of the atoms.

There are however various possible reasons to impose further constraints on the learned

dictionaries. For example, all the sparse recovery conditions developed so far (see [17] for

a review) depend on geometrical properties of the dictionaries. In particular, one such

property is the cumulative mutual coherence,

µ̄L(D) :=max













max
i /∈J

∑

j∈J

|dT
i d j| : J ⊆

�

1, . . . , p
	







: |J |= L







, (2.7)

that is, the maximum absolute correlation between a fixed atom and L other atoms of D

(we use the shortand µ̄(D) for the particular case of L = p−1). Loosely speaking, the more

distinguishable the atoms in a dictionary are (smaller mutual coherence), the easier it is

to recover the sparsest representation (1.2) via approximate methods such as `1 convex
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relaxations, or greedy pursuit. For example, in [6, Theorem B] it is established that, to

recover an γ-sparse “signal” a (sparse coefficients in our notation) by either approximate

method, the following condition must hold,

µ̄(γ−1)(D) + µ̄(γ)(D)< 1.

Such recoverability properties are important in sparse modeling when a and, in particular,

its support supp(a), are features used for example in classification.

Another geometrical property of the dictionary D which is relevant to sparse mod-

eling applications is its spectral norm ρ(D), that is, its largest singular value ρ(D) =
p

λmax(DᵀD). It is well known that the speed of convergence of `1 sparse coding algo-

rithms from the family of Iterative Shrinkage/Thresholding (IST) [9, 12] depends on this

value (see [47] for a review).

Both the incoherence µ̄(D) and ρ(D) are related via the following inequality (see Sup-

plementary Material at the end of Appendix C for a proof)

ρ(D)≤
p

1+ µ̄(D).

Controlling the incoherence has been investigated in the compressive sensing litera-

ture [47]. In our case, we propose to add a new term to the traditional dictionary learning

formulation (1.6) which imposes a small Frobenius norm of the Gram matrix DᵀD, thus

indirectly reducing both ρ(D) and µ̄(D),

min
(A,D)

1

n

n
∑

j=1

h





y j −Da j







2
2+λψ(a j)

i

+η




DT D






2
F , (2.8)

where ψ(·) is a sparsity inducing regularizer such as the `1 norm.



18

For proper choices of the parameter η > 0, the resulting dictionaries exhibit a cumula-

tive coherence µ̄ usually around 5 times smaller than those observed in dictionaries learned

without the additional term, while retaining similar representative power (in the sense that

the sum of the fitting and regularization terms remains approximately the same), leading

to a significant improved ability to recover sparse signals, and an important acceleration of

the IST family of methods. See Appendix C for details.

The recent extension of sparse recovery results to group-sparse signals [42, 43, 44]

motivates a natural extension of the incoherence concept, the block-coherence, which can

be defined a follows,

µB(D) :=
1

m
max

n

ρ
�

Dᵀ[Gr]
D[Gl]

�o

.

In the work described in Appendix A, we promote block-incoherence while learning dic-

tionaries for different classes in order to improve the classification performance of a sparse

model based classification algorithm. In this case we have g classes, each one with an as-

sociated dictionary Dr , r = 1, . . . , g which is learned from a corresponding training dataset

Yr . We adapt the dictionaries to the classes by minimizing the standard `1 regularized

squared error energy. Block-incoherence is simultaneously promoted on all dictionaries in

a similar way to (2.8), by means of minimizing the Frobenius norm of (Dr)ᵀDl , r 6= l. This

results in the following problem,

min
{(Ar ,Dr ):r=1...g}

g
∑

r=1







nr
∑

j=1

�

1

2








yr
j −Drar

j










2

2
+λ‖ar

j‖1

�

+η
∑

l 6=r





(Dr)ᵀDl






2
F







. (2.9)

2.3 Imposing atom smoothness

The previously described work adds structure to the dictionaries by imposing restrictions

between the atoms. A complimentary idea is to impose structure to the atoms themselves.
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This is a natural result of applying the MDL-based framework described in Appendix D,

which is the subject of the next chapter. However, we can consider this idea aside from

the MDL interpretation as a way to robustify the process of learning dictionaries using a

few highly corrupted samples. We start by recalling the effective cost function (1.7) that is

approximately minimized in `1 traditional dictionary learning frameworks,

(D̂, Â) = argmin
D,A

n
∑

j=1

�

1

2





y j −Da j







2
2+λ





a j







1

�

+
ε

2
‖D‖2F , s.t.





dk







2 ≤ 1 , k = 1, . . . , p.

Here the dictionary regularization term ε
2
‖D‖2F is a simple regularization that further sta-

bilizes the norms of the atoms. This formulation, however, neglects the fact that learned

atoms often present features that are similar to those of the original data. For example,

the piecewise smoothness of small image patches is to be expected in the atoms of learned

dictionaries for such data (see Figure 1.3c).

Applying the ideas developed in Appendix D, Section 4.3, an alternative dictionary

regularization term can be formulated which takes such smoothness into account. For

example,

(D̂, Â) =argmin
D,A

n
∑

j=1

1

2





y j −Da j







2
2+λ





a j







1+ ε
p
∑

k=1





Wdk







1

s.t.




dk







2 ≤ 1 , k = 1, . . . , p. (2.10)

where W is a matrix that maps atoms dk to prediction residual vectors which are modeled

as Laplacian IID sequences (thus resulting in a `1 regularization term, see Appendix D for

details). For example, in the case of imposing piecewise-smoothness prior on the atoms de-

scribed in Appendix D, the matrix W produces the residuals of applying a bilinear predictor

to each atom dk. Another alternative is to replace the `1 term by an `2 norm in the dictio-

nary regularization term of (2.10), which in practice is easier to optimize than the `1 and
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already results in significant improvements over (1.7). See the Supplementary Material at

the end of Appendix D for details on this.



3 An information-theoretic view of

learned overcomplete sparse models

As mentioned in the introduction, one of the main goals of this thesis is to gain a better

understanding of sparse models as tools for describing given data. This chapter summarizes

the work done in this thesis along this line of research [37, 38, 48], the details of which

are given in appendixes C–E. We begin by reproducing here the motivating example given

in Appendix D.

3.1 Issues with traditional sparse models: a motivating example

Consider the K-SVD-based [4] sparse image restoration framework [49]. This is an `0-based

dictionary learning framework, which approximates (1.6) for the case r = 0 by alternate

minimization. In the case of image denoising, the general procedure can be summarized as

follows:

1. An initial, global dictionary D0 is learned using training samples for the class of data

to be processed (in this case small patches of natural images), for example using

Algorithm 1. The user must supply a patch width w, a dictionary size p and a value

for the sparsity-inducing penalty λ.

2. The noisy image J is decomposed into overlapping w×w patches (one patch per pixel

of the image), and assembled as the columns of the data matrix Y from which D is

21
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further adapted using the following denoising variant of (1.6),

(D̂, Â) = argmin
D,A

n
∑

j=1





a j







0 s.t.
1

2





y j −Da j







2
2 ≤ Cσ2, j = 1, . . . , n,





dk







2 = 1 , k = 1, . . . , p. (3.1)

Here the user must further supply a constant C (in [49], it is 1.32), the noise variance

σ2, and the number of iterations J of the optimization algorithm, which is usually

kept small to avoid over-fitting (the algorithm is not allowed to converge).

3. An intermediate result Ĩ is constructed by assembling the patches in Ŷ = D̂Â into the

corresponding original positions of the image.

4. The final denoised image Î is computed as Î= (η+1)−1(ηĨ+J), where η > 0 controls

the amount of original noisy image that is added back to produce the result.

Despite the good results obtained for natural images, some aspects of this method are

not satisfactory:

• Several parameters (w, p, λ, C , J , η) need to be tuned. There is no interpretation, and

therefore no justifiable choice for these parameters, other than maximizing the empirical

performance of the algorithm (according to some metric, in this case PSNR) for the data

at hand.

• The effect of such parameters on the result is shadowed by the effects of later stages

of the algorithm and their associated parameters (e.g. overlapping patch averaging,

amount η of noisy image in the final image). There is no fundamental way to optimize

each stage separately.

As a partial remedy to the first problem, Bayesian sparse models were developed (e.g.,

[20]) where some of these parameters are assigned prior distributions which are then
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learned from the data. However, this approach still does not provide objective means to

compare different models (with different priors, for example). Further, the Bayesian tech-

nique implies having to repeatedly solve possibly costly optimization problems, increasing

the computational burden of the application.

This chapter summarizes the work done towards defining a unified framework for solv-

ing all of the above issues in a principled way.

3.2 Universal models for priors with unknown parameters

The above example is actually the one that motivated this thesis in the first place, and the

results summarized in this section, the full details of which are provided in Appendix C, are

among the first ones obtained in this thesis towards the objectives stated at the beginning

of this chapter. The focus of this work is on the role of the regularization term that controls

the sparsity level in (1.5), which we recognized as one of the most difficult to tune in order

to obtain good results, for example in the work described in Appendix A.

The idea here is to re-interpret the traditional sparse coding and dictionary learning

problems as ones of codelength minimization, and then apply tools from universal coding

theory [21] to replace traditional regularizers such as `1 with one that can be guaranteed

to be better suited to the prior information about sparse coefficients arising from the de-

composition of any given data sample within the class of signals of interest.

For this, suppose that we have a fixed dictionary D and that we want to use it to com-

press an image which is first decomposed into non-overlapping blocks which are then ar-

ranged as the columns of a data matrix Y. The image is then encoded either losslessly by

encoding the reconstruction coefficients A and the residual E= Y−DA, or in a lossy manner,

by obtaining a good approximation Y≈ DA and encoding only A. Consider for example the
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latter case. Most modern compression schemes consist of two parts: a probability assign-

ment stage where the data, in this case A, is assigned a probability P(A), and an encoding

stage where a code C(A) of length L(A) bits is assigned to the data given its probability,

so that L(A) is as short as possible and A can be uniquely recovered from C(A). The tech-

niques known as Arithmetic and Huffman coding provide the best possible solution for the

encoding step, which is to approximate the Shannon ideal codelength L(A) = − log P(A)

[50, Chapter 5]. Therefore, modern compression theory deals with finding the coefficients

A that maximize P(A), or, equivalently, that minimize − log P(A).1 Now, to encode Y lossily,

we obtain coefficients A such that each data sample y j is approximated up to a certain `2

distortion ε,




y j −Da j







2
2 ≤ ε. Therefore, given a model P(a) for a vector of reconstruction

coefficients, and assuming that we encode each sample independently, the optimum vector

of coefficients a j for each sample y j will be the solution to the optimization problem

a j = argmin
u
− log P(u) s.t.





y j −Du






2
2 ≤ ε. (3.2)

For example, for the choice P(a) ∝ e−θ‖a‖1 (Laplacian IID coefficients model), (3.2) co-

incides with the Basis Pursuit Denoising (BPDN) [8] sparse coding formulation. Suppose

now that we want to perform lossless compression. In this case we also need to encode the

reconstruction residual e j = y j −Da j , which provides a conditional description of y j given

a j , that is, P(e j) = P(y j|a j). Since P(y j ,a j) = P(y j|a j)P(a j), the combined codelength will

be

L(y j ,a j) =− log P(y j ,a j) =− log P(y j|a j)− log P(a j). (3.3)

1Note that, in general, the reconstruction coefficients are considered real numbers, so that the probability
of A under any continuous probability distribution will be P(A) = 0. In order to use such distributions as our
models for the data, we assume that the coefficients in A are quantized to a precision ∆, small enough for the
associated density function f (a) to be approximately constant in any interval [a−∆/2, a+∆/2], a ∈ R, so that
we can approximate P(a) ≈∆ f (a), a ∈ R. Under these assumptions, − log P(a) ≈ − log f (a)− log∆, and the
effect of ∆ on the codelength produced by any model is the same. Therefore, we will omit ∆ in the sequel, and
treat density functions and probability distributions interchangeably as P(·). Of course, in real compression
applications, ∆ needs to be tuned.
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Therefore, obtaining the best coefficients a j amounts to solving mina L(y j ,a j), which for

the choices P(y|a) ∝ e−
1

2σ2 ‖y−Da‖2
2 (Gaussian error model) and P(a) ∝ e−θ‖a‖1 , (Laplacian

coefficients model) leads to the Lagrangian form of the Lasso sparse coding (1.5) with

λ= 2σ2θ .

In the context of codelength minimization, these priors (Gaussian, Laplacian) have un-

known parameters (σ2, θ) that need to be defined in order to have a complete description

of the problem, or either they have to be part of the optimization as well. The same hap-

pens with the maximum allowed distortion ε in (3.2). In particular, in many applications,

σ2 is usually assumed to be known, or easily estimated from the data. The distortion ε is

also usually set to a small multiple of σ2, for example 1.32mσ2 in [49]. Thus, the critical

parameter to define in this scenario is θ . The approach in this work is to bypass this choice

and replace P(a;θ) (here the dependency on θ made explicit) by a model that is capable

of fitting a almost as well as any instance of P(a;θ) that can be obtained for any θ . Such

models are known as universal models, and constitute a major tool in modern compression

theory (see for example [51]). There are several ways to construct such universal models.

In our case, we build an universal model for the family of Laplacian distributions P(a;θ)

by means of a convex mixture model,

Q(a) =

∫

Θ
P(a|θ)w(θ)dθ ,

where the mixing function w(θ) specifies the weight of each model in the mixture. Being a

convex mixture implies that w(θ)≥ 0 and
∫

Θ
w(θ)dθ = 1, thus w(θ) is itself a probability

measure over Θ.

Based on such universal models, we then re-define the sparse coding (and dictionary
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learning) problems in terms of the resulting regularizers, which we call universal regular-

izers, ψ(a) := − logQ(a). These regularizers share features with other well known non-

convex regularizers such as those based on the `r , 0 < r < 1 family of pseudo-norms and

their associated probability distributions, the Generalized Gaussian models (see e.g.[52]).

For example, one of the models developed in Appendix C, the MOE (Mixture of Exponen-

tials), is given by

QMOE(a|β ,κ) =
1

2
κβκ(|a|+ β)−(κ+1), a ∈ R, (3.4)

with κ,β being non-informative hyper-parameters. In the context of universal modeling,

this means that QMOE(a|β ,κ) will be a universal model regardless of the choice of such

hyper-parameters, which in turn means that it will be a “good model” for encoding any

instance of a. The associated regularizer is given by,

ψMOE(a) =− logQMOE(a|κ,β) = 2(κ+ 1)
p
∑

k=1

log(|ak|+ β).

A regularizer with the same form was proposed in [53] as an alternative view of the re-

weighted `1 sparse coding method developed there. In our case, the path was exactly the

opposite. We arrived at such regularizer using universal modeling arguments, and then

derived an optimization technique to approximately solve the resulting non-convex MOE-

based sparse coding problem,

â j = argmin
u

1

2σ2





y j −Du






2
2+ 2(κ+ 1)

p
∑

k=1

log(|uk|+ β), (3.5)

which is based on iterative local linear approximations (LLA) of the cost function (see Ap-

pendix C for details). This approximation method was proposed independently in [54]. The

LLA technique, when applied to (3.5), results in the exact same re-weighted `1 formulation
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(a) DCT basis for 2D 8×8
patches.

(b) Global empirical distribution of
DCT transform coefficients obtained
by transforming 107 natural image
8×8 patches.

(c) Empirical distribution of the coef-
ficients associated to each DCT atom.
Notice their different widths.

Figure 3.1: Distribution of DCT coefficients.

proposed in [53]. In our case, however, the parameters (κ,β) can be interpreted as hyper-

parameters of the distribution underlying the regularizer and, as such, they can be fitted by

Maximum Likelihood (for example) to the data. In contrast, in [53] these parameters have

no associated interpretation, and thus need to be hand-tuned.

An additional benefit of the use of a universal regularizer is that it also works well when

the underlying distribution parameter θ has a different value θk for each k-th coefficient

in a (that is, in an independent, non-identically distributed model for the coefficients).

This is of particular interest to the case of image coding since it is empirically known that

coefficients associated to different atoms have different distributions. This is well known for

the case of the DCT transform [55] (see Figure 3.1), and, more importantly, has also been

observed to hold for the case of learned dictionaries in the work described in Appendix C,

where empirical results on this are reported.

Due to their universality, the proposed regularizers are at the same time robust, in the

sense that they perform well for a wide range of signals (within the class of signals for

which they were designed), and flexible, since they also cope well with the extended model

consisting of a different Laplacian parameter θk for each coefficient ak, k = 1, . . . , p, without

adding extra parameters to the actual regularizer. With these two features combined, the
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proposed universal regularizers yield improved empirical sparse recovery rates (confirmed

analytically for example in [56]), which in turn improves the performance of sparse models

in tasks such as image denoising or patch-based image classification. Again, full details on

this are given in Appendix C.

3.3 Sparse models, model selection, and MDL

Using the universal models developed in the previous work (which are specifically designed

for sparse modeling of images) as the main building block, the next step towards solving

the issues described in Section 3.1 is the development of a framework for automatically

choosing the best sparse model, along with all the associated parameters, for a given data

or data class. This is the subject of the work described in Appendix D.

In general, the problem of selecting the best model M̂ , out of a set of candidate models

M , for representing a given dataset Y, is known as the model selection problem. In this

sense, the work described in Appendix D provides practical realizations of the three main

ingredients for performing model selection for the specific case of learned sparse models,

namely:

1. Define the classM of learned sparse models, using as much prior information about

it so that searches within the class can be performed efficiently.

2. Define an objective criterion for selecting the model M̂ ∈ M which better fits the

given data Y.

3. Define and implement efficient algorithms for performing such selection.
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3.3.1 The class of learned overcomplete sparse models

The first ingredient, the model classM , is defined to be the union of nested family of model

classesM =
⋃+∞

p=0M (p), with

M (p) :=
¦

(E,A,D) : Y= DA+ E, D ∈ Rm×p
©

(3.6)

where p is the size (number of atoms) of the dictionaries in M . Such models are nested,

in the sense thatM (p− 1) ⊂M (p).2 This is an important feature ofM which allows for

efficient search methods.

3.3.2 The description length of learned sparse models

The second ingredient, that is, the objective function used for selecting the best model

within M , is provided by the Minimum Description Length (MDL) principle for model

selection.

In MDL, given a family or model classM of candidate models indexed by a parameter

M , and a data Y, the best model M̂ ∈M is the one that can be used to describe Y completely

(including the parameters M themselves) with the fewest number of bits,

M̂ = arg min
M∈M

L(y, M), (3.7)

where L(y, M) is a codelength assignment function which defines the theoretical codelength

required to describe (y, M) uniquely, and which is a key component of any MDL-based

framework. The underlying idea of MDL is that compressibility is a good indirect way of

measuring the ability of a model to capture regularity from the data. Common practice in

MDL uses the Ideal Shannon Codelength Assignment [50, Chapter 5] to define L(Y, M) in

terms of a probability assignment P(Y, M) as L(Y, M) =− logP(Y, M) (all logarithms will be
2In order to be formally correct, this statement requires some conventions which are detailed in Appendix D.
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assumed on base 2 hereafter). In this way, the problem of choosing L(·) becomes one of

choosing a suitable probability model for (Y, M).

As efficient probability assignment functions are needed, MDL relies heavily on the use

of universal models such as the ones developed in Appendix C. It is in this sense that

the work described there and summarized at the beginning of this chapter is used here as

one of the main building blocks, in particular, for describing non-zero sparse coefficients

efficiently. In addition to these, Appendix D introduces universal models for describing the

other parts of the sparse model as well, including the approximation error E, the dictionary

D, and the support of the non-zero coefficients (which was not considered in Appendix C

as part of the coefficients model). Adding these components, an overall codelength for

describing Y in terms of a given model M , L(Y|M) is completely defined. In particular, the

model chosen for the error term E, together with the universal coding scheme developed for

it, leads naturally to robust fitting terms that belong to the family of ψ-type M-estimators

characterized by Huber [57].

3.3.3 MDL-based sparse coding and dictionary learning algorithms

The third component comprises the algorithms for performing sparse model selection. In

this case, three main algorithms are provided:

MDL-based sparse coding: Given a data matrix Y, this algorithm selects the best sparse

code a j for each data sample y j for a fixed dictionary D (thus, performing an efficient

search in a subset of M (p)). This search is performed sequentially on a sample-by-

sample basis. The concatenation of such sparse codes, and the associated errors e j ,

constitute the model parameters (E,A) for the given dictionary D. Here we intro-

duce a collaborative variant in which statistical information from previously encoded

samples, including spatial/temporal (Markov) dependencies, are used to improve
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the coding efficiency of new samples. These are therefore MDL-based sparse cod-

ing algorithms. By virtue of the automatic model selection procedure involved, the

sparsity level of each coefficients vector a j is chosen automatically according to the

codelengths produced, and the resulting algorithm is free of any critical parameter

to be tuned. Details on these algorithm are given in Appendix D, Section 3, and the

corresponding Supplementary Material.

Fixed-size regularized dictionary learning: The second algorithm searches for the best

dictionary D̂ within the sub-classM (p), thus constituting an MDL analog to the tra-

ditional dictionary learning algorithm described in Algorithm 1 on page 8. The fact

that D needs to be encoded as well to produce a complete description of the data

results in a cost function (D.17) which includes a dictionary regularization term. This

novel regularized dictionary learning formulation aids in the robustness of the dic-

tionary learning process in cases where training samples are few and/or significantly

corrupted by noise.

Parameter-free MDL-based dictionary learning: The third algorithm compares the best

model in each subclassM (p), M̂ = (A(p),D(p)) in terms of the associated codelength

cost for describing Y in terms of it, L(Y|A(p),D(p)), and chooses the one for which

such codelength is the smallest. Together with the second algorithm, this one relieves

the user of selecting the best dictionary size p, thus resulting in a parameter-free

dictionary learning algorithm.

Combining the power of learned sparse models with the parameter-free model selection

algorithms developed in this framework, we obtained results comparable to, and some-

times surpassing, the state-of-the-art in applications such as grayscale image denoising (fig-

ures 3.2, 3.3 and Table 3.1) and texture segmentation (Figure 3.4). In the case of image

denoising, in addition to the traditional distortion-constrained (RD) denoising formulation
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Table 3.1: Denoising results, in PSNR, compared for K-SVD [4], MDL denoising [58], and the Post-
Thresholding (PT) and Rate-Distortion (RD) denoising variants. Notice the significant improvement
over the previous MDL-based denoising algorithm [58].

noise→ σe = 10 σe = 20
image ↓ PT RD [58] [4] PT RD [58] [4]
lena 34.9 35.2 32.4 35.5 32.0 32.2 29.4 32.4
barbara 33.0 33.8 29.4 34.4 29.7 30.6 25.7 30.8
boat 33.1 33.2 30.5 33.6 29.5 30.3 27.5 30.3
peppers 34.1 34.4 32.2 34.3 31.7 31.6 29.4 30.8

found in other sparse model-based image denoising works such as [4, 49, 58], which de-

pends on a hand tuned parameter (the required distortion ε), we propose a novel method

called post-thresholding (PT), which is truly parameter free, is more consistent with the

model assumptions, is faster, and produces less artifacts than the RD one (however, its per-

formance in terms of PSNR is consistently worse than RD, which can be explained by a

tendency to over-smoothing, see Figure 3.3).

3.4 Extension to other types of problems

As an example of the flexibility of the framework proposed in Appendix D for tackling the

sparse model selection problem in a variety of scenarios, we introduce in appendixes D

and E an extension of this framework for performing MDL-based model selection on the

set of low-rank matrix approximations of a given data matrix Y. Here we summarize the

concepts and results from these works, leaving the details to the respective appendixes.

The low-rank matrix approximation family of problems (see [59] for a review) can be

seen as an extension to the problem of sparse coding where sparsity is substituted by matrix

rank. Concretely, the task is to recover a matrix A ∈ Rm×n from an incomplete and/or

corrupted observation Y, under the assumption that the rank of A, rank(A), is small. As

with sparse coding, rank(A) is relaxed using the `1 equivalent for matrix rank, which is
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Figure 3.2: Denoising results for σ = 10. For each image we show, from left to right: detail of clean
image, noisy image, PT result, RD result.
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Figure 3.3: Denoising results for σ = 20. For each image we show, from left to right: detail of clean
image, noisy image, PT result, RD result. Note the artifacts produced by the RD algorithm. The PT
algorithm, on the other hand, has a tendency to over-smooth.

Figure 3.4: Left to right: Texture mosaic, dictionaries learned for each class (note the automati-
cally learned different sizes), patch-wise codelength-based classification map –each shade of gray
corresponds to a texture class – (77.0% success rate), classification map obtained by averaging the
codelength over a neighborhood of patches (95.4% success rate).
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the nuclear norm, ‖A‖∗ :=
∑

i σi(A), where σi(A) is the i-th singular value of A. It has

been shown in [59] that, under certain assumptions on rank(A), the following estimation

function is able to recover A from a noisy observation Y, and with a significant fraction of

its coefficients arbitrarily corrupted,

Â= argmin
W
‖W‖∗+λ‖Y−W‖1 , λ= 1/

p

max{m, n}. (3.8)

The setting chosen in our case is the robust background estimation problem in cam-

era surveillance video sequences [60], which is a common proof of concept when apply-

ing (D.19). To perform our MDL-based model selection within this formulation, we solve

(D.19) for increasing values of λ, obtaining a low-rank approximation to A, (A(λ),E(λ) =

Y− A(λ)) in each case. To solve the sequence of problems (D.19) efficiently, we modified

the algorithm described in [61] to allow for warm restarts, using the solution for the pre-

vious λ as a starting point for the next λ, this resulting in a significant reduction of the

overall computational cost of the model selection process.

In order to encode the low-rank approximation (A(λ),E(λ)) efficiently, we exploit the

potential sparsity of E(λ) and the low-rank of A(λ). The first is done as in the case of

the learned sparse models described above by first describing the support of the non-zero

errors using an universal enumerative code [62], and then its non-zero values using the

universal models for Laplacian variables MOE developed in Appendix C. In order to exploit

the low-rank of A(λ), we use its reduced SVD decomposition A(λ) = U(λ)Σ(λ)V(λ)ᵀ. For

rank(A(λ)) = r, we have that U(λ) ∈ Rm×r are the left-eigenvectors, Σ ∈ Rr×r is the

diagonal matrix whose diagonal are the non-zero singular values of A(λ), and V(λ) ∈

Rr×n are the right-eigenvectors of A(λ). The overall low-rank decomposition is depicted

in Figure 3.5. Each component in this decomposition is assigned a codelength, so that the

total description codelength of Y under a given model (A(λ),E(λ)) is given by L(Y;λ) =
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Figure 3.5: Scheme of low-rank decomposition of the data Y= A+E, showing the assumed sparsity
of E and the reduced SVD decomposition of A= UΣV (of rank r = 2 in the example).

L(E(λ))+ L(U(λ))+ L(Σ(λ))+ L(V(λ)). The MDL-based estimation algorithm then chooses

the model for which the codelength L(Y;λ) = L(E(λ)) + L(U(λ)) + L(Σ(λ)) + L(V(λ)) is

minimized. The details on how these codelengths are computed, including the probability

models used, and choices such as the quantization of the different components, are given in

Appendix E. As in [60], here we show results for two sequences taken from [63]: “Lobby”

(Figure 3.6(a)), and “ShoppingMall” (Figure 3.6(b)). Full videos of these and other video

sequences can be viewed at http://www.tc.umn.edu/~nacho/lowrank/.
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(a) Results for “Lobby” sequence, featuring a room
with lights that are switched off and on. The rank
of the approximation for this case is rank = 10. The
moment where the lights are turned off is clearly seen
here as the “square pulse” in the middle of the first
two right-eigenvectors (bottom-right). Also note how
u2 (top-right) compensates for changes in shadows.

(b) Results for “ShoppingMall”, a fixed camera look-
ing at a crowded hall. In this case, the rank of the
approximation decomposition is rank = 7. Here, the
first left-eigenvector models the background, whereas
the rest tend to capture people that stood still for a
while. Here we see the “phantom” of two such per-
sons in the second left-eigenvector (top-right).

Figure 3.6: Low-rank approximation results. Both figures show the first two left-eigenvectors as
2D images at the top, two sample frames from the approximation error sequences in the middle,
which should contain the people that were removed from the videos, and the curve L(λ) and the
right-eigenvalues, scaled by Σ (representing the “activity” of each left-eigenvector along time), at
the bottom.



4 Conclusions

In the present thesis, we have provided new theoretical and practical building blocks to-

wards defining a new generation of learned sparse models. These include:

New sparse coding formulations incorporating further structure, beyond sparsity, which

is found in important sparse modeling applications such as source separation and

identification, obtaining state-of-the-art results in those applications.

Novel dictionary learning formulations promoting incoherence and block-incoherence in

the learned dictionaries for improved sparse recovery accuracy and reduced compu-

tational cost during coding. The benefits of imposing these features on dictionaries

were demonstrated in tasks such as image denoising and classification.

A new family of universal sparsity-promoting regularizers which are flexible, robust, and

replace critical hand-tuned parameters in favor of non-critical, non-informative hyper-

parameters. The information-theoretic framework on which these regularizers are

based further sheds new light into ad-hoc regularizers that have been proposed in the

literature, and defines a general methodology for defining new regularizers for other

types of data.

A parameter-free sparse coding and dictionary learning framework that automatically

adapts to the inherent complexity of the modeled data. This framework provides a

new MDL-based information-theoretic approach to understanding sparse models as

data modeling tools, highlighting the role of sparsity, and overcompleteness, in the

38



39

flexibility and robustness of such models for adapting to given data. The results

obtained match, and some times surpass, the state-of-the-art in the applications on

which the present framework was deployed. In particular, this is the first MDL-based

framework that yields results that are competitive with the state-of-the-art in image

denoising. The framework is also efficient, in the sense that the computational re-

quirements of both the sparse coding and dictionary learning algorithms developed

is similar to those already available for traditional sparse models.

A parameter-free low-rank matrix approximation algorithm derived using the same ideas

as the sparse modeling framework. We applied this framework to the problem of com-

plex background extraction in video sequences, obtaining state-of-the-art results out

of the box.

Future work

There are several ways in which the above work can be extended and/or improved. Some

possible lines of work include:

Generalizing the concept of sparsity, for example, beyond indicating solutions with “many

zeroes”. Instead, one could think of signals which alternate between a predominant

“background model” (for example, background noise), and a “large signal model”,

for indicating relevant samples. The MDL-based framework presented in Appendix D

can easily accommodate this idea, making this generalization an appealing line of

research in the immediate future.

Automatic scale selection in image processing applications. Our framework in Appendix D

could be extended to learn the patch width w automatically, a parameter whose

choice is often critical for the success of any patch-based application. Currently avail-

able multi-scale analysis tools could provide us with efficient ways to perform this
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search.

MDL-based structured sparse modeling. This would combine the two main lines of work

of this thesis, by complementing the structured sparse models developed in Ap-

pendix B, including group, hierarchical and collaborative hierarchical models, with

the MDL-based model selection framework developed in Appendix D.
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Classification and Clustering via Dictionary Learning with

Structured Incoherence and Shared Features

Ignacio Ramirez, Pablo Sprechmann, and Guillermo Sapiro

Electrical and Computer Engineering, University of Minnesota

A clustering framework within the sparse modeling and dictionary learning
setting is introduced in this work. Instead of searching for the set of centroid
that best fit the data, as in k-means type of approaches that model the data as
distributions around discrete points, we optimize for a set of dictionaries, one
for each cluster, for which the signals are best reconstructed in a sparse coding
manner. Thereby, we are modeling the data as a union of learned low dimen-
sional subspaces, and data points associated to subspaces spanned by just a
few atoms of the same learned dictionary are clustered together. An incoher-
ence promoting term encourages dictionaries associated to different classes to
be as independent as possible, while still allowing for different classes to share
features. This term directly acts on the dictionaries, thereby being applicable
both in the supervised and unsupervised settings. Using learned dictionaries
for classification and clustering makes this method robust and well suited to
handle large datasets. The proposed framework uses a novel measurement for
the quality of the sparse representation, inspired by the robustness of the `1
regularization term in sparse coding. In the case of unsupervised classification
and/or clustering, a new initialization based on combining sparse coding with
spectral clustering is proposed. This initialization clusters the dictionary atoms,
and therefore is based on solving a low dimensional eigen-decomposition prob-
lem, being applicable to large datasets. We first illustrate the proposed frame-
work with examples on standard image and speech datasets in the supervised
classification setting, obtaining results comparable to the state-of-the-art with
this simple approach. We then present experiments for fully unsupervised clus-
tering on extended standard datasets and texture images, obtaining excellent
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performance.

1 Introduction and Basic Formulation

In recent years, sparse representations have received a lot of attention from the signal

processing community. This is due in part to the fact that an important variety of signals

such as audio and natural images can be well approximated by a linear combination of a

few elements (atoms) of some (often) redundant basis, usually called dictionaries [1].

Sparse modeling aims at learning these non parametric dictionaries from the data itself.

Several algorithms have been developed for this task, e.g., the K-SVD and the method of op-

timal directions (MOD). Recent publications in a wide spectrum of signals and applications

have shown that this approach can be very successful, leading to state-of-the art results,

e.g., in image restoration and denoising, texture synthesis, and texture classification. In the

supervised or weakly supervised classification setting, this class of algorithms learn dictio-

naries from the labeled training dataset and use features of the sparse decomposition of the

testing signal for classification (see [2, 3, 4, 5]).

In this paper we propose a framework for clustering datasets that are well represented

in the sparse modeling framework with a set of learned dictionaries (see [6] for our earlier

work in this direction). Given K clusters, we learn K dictionaries for representing the data,

and then associate each signal to the dictionary for which the “best” sparse decomposition

is obtained. Note that it is not that each data point belongs to a union of subspaces as for

example in [7, 8]. Comparing with block/group sparsity, here a single dictionary (block) is

selected per data point, and the point is sparsely represented (subspace) with atoms only

from this dictionary.1 Also in contrast with more classical subspace clustering, data points

in the same class can belong to more than one subspace, since each dictionary represents a

1Sharing atoms between the classes, and therefore having non-empty intersecting subspaces is permitted in
our framework as well, see Section 3.1
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large number of subspaces (each sparsity pattern defines one subspace). The model is then

very rich and non-linear.

The first building block of the proposed clustering framework is based on considering

min
Di ,Ci

K
∑

i=1

∑

x j∈Ci

R(x j ,Di), (A.1)

where Di = [d1|d2 . . . |dki
] ∈ Rn×ki is a dictionary of ki atoms associated with the class

Ci , x j ∈ Rn are the data vectors, and R is a function that measures how good the sparse

decomposition for the signal x j under the dictionary Di is. In the general case, different

dictionaries may have different number of atoms, ki might be cluster dependent. This

problem is closely related with the k-q-flat algorithm that aims at finding the closest k q-

dimensional flats to a dataset [9]. However, there are major differences between the two.

In particular, the framework here proposed, following the sparse representation approach,

considers a large number of flats per class, and does not assume a pre-defined, or even

constant across classes, (q) dimension, resulting in a richer space for representing and

clustering the signals.

To complete the model, we add a block/dictionary incoherence term, inspired in part by

the works on standard sparse coding, e.g., [10, 11, 7, 12], where it was shown that both the

speed and accuracy of sparse coding techniques such as soft-thresholding and orthogonal

matching pursuit depend on the incoherence between the dictionary atoms. Here we add

a term Q(Di ,D j) that promotes incoherence between the different dictionaries, thereby

obtaining a general energy of the form

min
Di ,Ci

K
∑

i=1

∑

x j∈Ci

R(x j ,Di) +η
∑

i 6= j

Q(Di ,D j). (A.2)

This energy will then lead to the learning of dictionaries optimized to properly represent
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the corresponding class, due to R , while at the same time being weak for the other classes,

due to the term Q. We will later show how classes can still share atoms, an important

property for classification algorithms [13], and a unique characteristic of our proposed

model. Note that in contrast with prior work on dictionary learning for classification, this

novel cross dictionary learning term Q is independent of the data, is intrinsic to the dic-

tionaries being learned, thereby rendering itself also to the case of unsupervised or semi-

supervised classification and clustering. For the experiments in this paper we use the terms

Q(Di ,D j) = ‖DT
i D j‖2F , where the subscript F denotes Frobenius norm.2

We propose a measurement R for the quality of the sparse representation that natu-

rally takes into account both the reconstruction error and the sparseness (complexity) of

the representation on the corresponding learned dictionary. Such measurement can be

applied to image patches directly or to image features, e.g., SIFT as in [5]. In practice

this measurement has shown enormous discrimination power. To further show this, we

performed experiments in the supervised classification setting using labeled data; we first

learned a dictionary for each class (with the incoherence promoting term Q), and then

classified each testing signal according to this measure. This very simple approach gives

results comparable with the state-of-the-art for several benchmark datasets. Thereby, as

a by-product of our proposed clustering framework, we obtain a very simple and efficient

supervised classification technique as well.

In the unsupervised clustering case, the initialization is very important for the success

of the algorithm. Due to the cost associated with the procedure, repeating random initial-

izations is practically impossible. Thus a “smart” initialization is needed. We propose an

approach that combines sparse coding with spectral clustering [15], and is applicable to

large datasets.

2We can also easily add internal incoherence between the atoms of each dictionary [14], in order to further
stabilize not only the dictionary selection but the particular atoms in the corresponding dictionary. This is done
here for the initialization step.
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Ideas related to the ones here proposed were previously employed for subspace cluster-

ing [16, 17, 18], clustering using the so-called `1-graph by Huang and Yan (see description

in [19]), and label propagation [20]. In contrast with our proposed dictionary learning

framework, these works model all the data points in a given class as belonging to the same

unique subspace, while we model them as “belonging” to the same dictionary, a richer non-

linear model since each subset of atoms from the dictionary represents a different subspace.

Moreover, these very inspiring approaches all use the data itself as dictionary, sparsely rep-

resenting every data point as a linear combination of the rest of the data. Such representa-

tion is computationally expensive (virtually unusable for datasets of thousands of points).

In addition, the large redundancy and coherence expected from using the data itself as

dictionary is prompt to make the sparse coding very unstable: as mentioned above, it is

well known that such coding techniques strongly depend on the internal coherence of the

dictionary. Furthermore, the performance of these methods decreases when the number of

clusters grows. We propose as part of our framework a method to bypass this problem that

divides the clustering problem into several binary ones. In a natural way, we use the pro-

posed energy function to decide which partition to choose. Such binary division framework

is not so natural for these other related clustering methods.

In Section 2 we summarize the main ideas of sparse coding and dictionary learning. In

Section 3 we define the measure R and analyze its discriminative power providing exam-

ples of supervised classification. In Section 4 we present the proposed clustering algorithm,

together with theoretical guarantees and experimental results. Finally, we conclude the

paper in Section 5.
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2 Sparse Coding and Dictionary Learning

Sparse coding means to represent a signal as a linear combination of a few atoms of a

given dictionary. Mathematically, given a signal x ∈ Rn and a dictionary D ∈ Rn×k, the

sparse representation problem can be stated as mina ‖a‖0, s.t. x = Da, where ‖a‖0 is the

`0 pseudo-norm of the coefficient vector a ∈ Rk, the number of non-zero elements. As

minimizing `0 is NP-hard, a common approximation is to replace it with the `1-norm. In

the noisy case the equality constraint must be relaxed as well. An alternative then is to

solve the unconstrained problem,

min
a
‖x−Da‖22+λ‖a‖1, (A.3)

where λ is a parameter that balances the tradeoff between reconstruction error and sparsity.

It is a well known fact that the `1 constraint induces sparse solutions for the coefficient

vectors a. Furthermore, this is a convex problem that can be solved very efficiently using

for example the LARS-Lasso algorithm [21]. This alternative has also been shown to be

more stable than the `0 approach in the sense that in the latter, small variations in the

input signal can produce very different active sets (the set of non-zero coefficients in a, or

selected atoms from D).

Now, what about the actual dictionary D? State-of-the-art results have shown that it

should in general be learned from data. Given a set of signals {xi}i=1...m in Rn, the goal is

to find a dictionary D ∈ Rn×k such that each signal in the set can be represented as a sparse

linear combination of its atoms. In this work we use a variation of [22], where learning the

dictionary is done by seeking a (local) solution to the following optimization problem,

min
D,{ai}i=1,...,m

m
∑

i=1

‖xi −Dai‖22+λ‖ai‖1, (A.4)
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while restricting the atoms to have norm less than one. The optimization is carried out

using an iterative approach that is composed of two (convex) steps: the sparse coding step

on a fixed D and the dictionary update step on fixed a.

3 The Sparse Representation Quality R̂ and Supervised Classi-

fication

A common approach when using dictionaries for classification is to train class specific dic-

tionaries using labeled data and then assign each testing signal to the class for which the

best reconstruction is obtained [3, 4]. The measure employed for this task is often the

reconstruction error, R(x,D) = ‖x − Da‖22, where a is the optimal coefficient vector in

the sparse coding. While this strategy leads to very good results, it does not take into ac-

count the actual sparsity of the reconstruction. Suppose that we have two dictionaries for

which almost the same reconstruction error is obtained, but one of them requires double

the atoms than the other. In such a situation one would rather select the dictionary that

gives the sparsest solution (simplest, following Akaike’s Information Principle [23]), even

if the reconstruction error is slightly larger.

In practice, this problem can be addressed using a small pre-defined sparsity level L

in an `0 approach. This strategy is not longer valid when the convex relaxation (A.3) is

employed (such relaxation is critical for classification tasks requiring robustness and sta-

bility). In this situation, comparing the reconstruction errors alone has little meaning. We

propose then to use the actual cost function in (A.3) as a measure of performance, as in

the dictionary learning (A.4), R̂(x,D) = mina ‖x − Da‖22 + λ‖a‖1. This alternative takes

into account both the reconstruction error and the complexity of the sparse decomposition.

The reconstruction error measures the quality of the approximation while the complexity is

measured by the `1 norm of the optimal a.
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dataset proposed data A B C SVM k-NN

MNIST 1.26 1.35 3.41 1.05 - 1.4 5.0
USPS 3.98 4.14 3.56 4.38 6.05 4.2 5.2

ISOLET 3.01 3.34 4.3 3.4 - 3.3 8.7

Table A.1: Error rate (in percentage) for the algorithm discussed in Section 3. We present com-
parisons with recently published approaches (results taken from the corresponding papers). The
“data” column corresponds to using our discrimination function with dictionaries formed with the
whole training dataset. MNIST: (A) is the best reconstructive method presented in [24], while (B)
is the best discriminative one. USPS: (A) is the best reconstructive and (B) is the best discriminative
method, both reported in [24]. (C) is the best result obtained in [25] (only USPS available). ISOLET:
(A) is the supervised k-q-flats and (B) is the k-metrics in [26]. We also compare with an SVM with
Gaussian kernel and the Euclidean k-NN.

Let Xi , i = 1, . . . , K , be a collection of K (labeled) classes of signals and Di the corre-

sponding dictionaries trained for each of them independently following for example (A.4).

This gives, for each class, a (reconstructive) dictionary unaware of the task (classifica-

tion/clustering) and of the data in the other classes. Thereby, as detailed in the introduc-

tion, it is more appropriate to add the dictionary incoherence Q(Di ,D j), and the proposed

optimization is

min
{Di ,Ai}i=1...K

K
∑

i=1







‖Xi −DiAi‖22+λ
mi
∑

j=1

‖a j
i‖1







+

η
∑

i 6= j

‖DT
i D j‖2F . (A.5)

Here we used the standard notation Ai = [a1
i . . .ami

i ] ∈ R
ki×mi , each column a j

i is the sparse

code corresponding to the signal j ∈ [1..mi] in class i. Note that the first term in the

optimization is as in (A.4), where each dictionary is optimized for the data from its own

class. The second term provides the coupling. In contrast with works such as [3], the

coupling is between the dictionaries, the labeled data points do not form part of this term,

thereby this can be used also in the non-supervised learning process, see next section.
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Once the dictionaries have been learned, the class ĵ0 for a given new signal x is found by

solving ĵ0 = arg min j=1,...,K R̂(x,D j).3 This procedure is very simple and its few parameters

can be found via cross-validation.

3.1 Sharing Atoms

In practice, it turns out that even though we impose incoherence in the dictionaries, atoms

representing common features in all classes tend to appear repeated almost exactly in dic-

tionaries corresponding to different classes. Being so common, these atoms are used of-

ten and their associated reconstruction coefficients have a high absolute value |ar |, r ∈

{1, . . . , ki}, thus making the reconstruction costs R̂(x,Di) similar. By ignoring the coef-

ficients associated to these common atoms when computing R̂ , we can improve the dis-

criminatory power of the system. The natural way to detect such atoms is to inspect the

already available DT
i D j matrices, whose absolute values represent the inner products be-

tween atoms. In the following experiments, a threshold of 0.95 consistently improves the

results, sometimes significantly. Note that this procedure accounts for allowing classes to

share features [13], and the corresponding subspaces to have intersections, in contrast for

example with [16]. Figure A.1 illustrates examples of automatically learned shared atoms

in the task of learning to classify digits from the MNIST dataset. See [27] for the selection

of features (atoms) for parametric dictionaries.

3.2 Experimental Results

We first test this simple classification method with standard datasets, the MNIST and USPS

digit datasets and the ISOLET data that consists of 617 audio features extracted from 200

speakers saying each letter of the alphabet twice. We used in every case the usual train-

ing/testing split. In Table A.1 we present the obtained results. We compare our results with
3We actually obtain more than this information, since for each x we compute all the R̂s for all the K classes,

and thereby can provide a soft classification with probabilities, or a feature vector for an SVM.
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several much more sophisticated classification algorithms. The results obtained are com-

parable and sometimes even better. We also compare with the standard Euclidean k-NN

and with SVM with a Gaussian kernel. In all our experiments we used a penalty parameter

λ = 0.1. The size of the dictionary depends on the number of training samples as well as

the intrinsic complexity of the data. For MNIST, which has many samples, our best results

were obtained with k = 800. In contrast, USPS and ISOLET have much less samples and more

variability, leading to a much smaller dictionaries of size k = 80 and k = 60 respectively.

These already state-of-the-art results can be further improved for example using the R̂i in

an SVM.

One could think of using the whole training datasets as dictionaries for each class as

with the approaches mentioned in the introduction [16, 18, 19]. In that case, in all our

experiments the error rates obtained are not better than the ones reported in Table A.1.

Using the data as dictionaries has the additional disadvantage that the computational cost

of the classification becomes prohibitive,4 and the method is highly susceptible to label

errors due to the high coherence of the “dictionary.”

Finally, we illustrate the discrimination power of the measure R̂ in a more challenging

scenario using images from the Grasz02 dataset [28]. We address the object detection task

by learning dictionaries for the local SIFT descriptors of an object class.

We chose the “bike” class from the Graz02 as an example, and test our proposed frame-

work in two different weakly supervised settings. In the first setting, along with the training

images, we provide the algorithm with a bounding box enclosing the bikes present in each

of these images. In the second, the only supplied information is whether a bike is present

or not in each of the training images. Clearly, the second case is more challenging. On

each image we extract 128 dimensional SIFT descriptors from patches of 32×32 pixels

computed over a grid with spacing of 4 pixels. For the first setting, we randomly pick

4The cost of learning the dictionaries in our approach is off-line.
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300, 000 SIFT descriptors from inside and outside of the bounding box respectively, and

learn corresponding dictionaries with 500 atoms each. In the second setting, the bike and

background dictionaries were learned from all the patches extracted from images marked

as either containing a bike or purely background respectively.

In both cases, the dictionary for the class “bike” was learned iteratively, keeping the

90% of the descriptors that were more clearly assigned to the class “bike” at each iteration.

This allows us to gradually discard background descriptors labeled as “bike.” The choice of

training and testing images was performed as it is usual for this dataset, where the first 300

images are split in two, the odd images for training, and the even images for testing.

Since classified patches overlap, each pixel in the image has several possible energy

values R̂ for each of the two dictionaries, one per patch covering it. This spatial redundancy

helps the algorithm to determine a more accurate energy value at the pixel level by means

of a simple spatial average, with a Gaussian kernel, giving more weight to patches in which

the pixel is closer to the center. Using a Gaussian regularization on the energy images has

proven to improve the results. This is in part due to the way the ground truth masks are

defined, Figure A.2. The wheels are labeled as belonging to the class “bike” while most of

the time one can see the background behind them. A strategy that considers the features

globally or at several scales would help [29, 5], but this is beyond the scope of this example.

In Figure A.2 we show the detection results obtained with this framework. We also

show the corresponding precision vs. recall curve for the whole testing set. The results

are very good, comparable to state-of-the-art, considering that we are using one single

dictionary to categorize each of these highly complex categories. In this object localization

application, the cancelation of atoms of high coherence has a crucial role because of the

similarities that both classes have at the local level. If one uses directly dictionaries trained

independently for each class, then most of the diagonal vertexes on the image tend to be

classified as “bikes” and the opposite happens with horizontal and vertical edges, which are
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Figure A.1: Atoms discarded due to excessive coherence. From left to right: 1 vs. 9, 3 vs. 5, 4 vs.
7, 5 vs. 8, 8 vs. 9. Notice how these atoms have learned features shared between different classes.

very frequent in urban environments.

4 Dictionary Learning for Clustering

We now proceed to extend the above dictionary learning and sparse coding frameworks

to unsupervised clustering. Given a set of signals, {x j} j=1...m in Rn, and the number of

clusters/classes, K ,5 we want to find the set of K dictionaries Di ∈ Rn×ki , i = 1, . . . , K , that

best represents the data. We formulate this as an energy minimization problem of the form

of Equation (A.2), and use the measure proposed in Section 3,

min
Di ,Ci

K
∑

i=1

∑

x j∈Ci

min
a j

i

‖x j −Dia
j
i‖

2
2+λ‖a

j
i‖1+

η
∑

i 6= j

‖DT
i D j‖2F , (A.6)

where as before, the atoms of all the dictionaries are restricted to have unit norm. In

contrast with (A.5), class assignments are unknown, and the optimization is carried out

iteratively using a Lloyd’s-type algorithm: Assignment step: The dictionaries are fixed and

each signal is assigned to the cluster for which the best representation is obtained: C j0 :=

¦

x : R̂(x,D j0)≤ R̂(x,Di) ∀i = 1, . . . , K
©

(omitting the contribution of shared atoms). Update step:

The new dictionaries are computed fixing the assignments found in the previous step. This

5When K is over-estimated, a micro-detailed partition is observed.
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Figure A.2: Bike detection on the Graz dataset using the measure R̂ . The two topmost rows show
the obtained detection for two sample images. The colored area corresponds to the regions for
which the representation energy using the bike dictionary is smaller than the background one. The
lighter the color, the more “bike-like” is the pixel. Bottom left: shows the ground truth for the
middle row. Bottom right: precision vs. recall curve for several algorithms [30] (blue,dashed),
[31] (black,dotted), [3] (red and green), and the proposed algorithm, using a bounding box (ma-
genta,solid), and weakly supervised (magenta,dashed).

is the dictionary learning problem (A.4), with the addition of the incoherence term.

The algorithm stops when the relative change in the energy is less than a given constant.

In practice few iterations are needed to reach good results. While the energy is being

reduced at every step, there is no guarantee of arriving to a global minimum. In this setting,

repeated initializations are computationally very expensive, thus a good initialization is

required. This is explained next.

4.1 Initialization: Spectral Clustering Meets Dictionary Learning

The initialization for the algorithm presented in the previous section can be given as a set

of K dictionaries or as an initial partition of the data, this is the Ci sets. We propose two

closely related algorithms one corresponding to each of these two alternatives. In both
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cases the main idea is to construct a similarity matrix and use it as the input for a spectral

clustering algorithm [32].

Let D0 ∈ Rn×k0 be an initial global dictionary trained (with internal incoherence) to

reconstruct the data for the whole (unlabeled) set X := [x1, . . . ,xm]. For each signal x j we

have the corresponding sparse representation a j . Let us define A = [a1, . . . ,am] ∈ Rk0×m.

Two signals belonging to the same cluster are expected to have decompositions that use

similar atoms. Thus one can measure the similarity of two signals by comparing the corre-

sponding sparse representations. Inversely, the similarity of two atoms can be determined

by comparing how many signals use them simultaneously, and how they contribute, in

their sparse decomposition. We compute two matrices representing each one of these cases

respectively:

Clustering the signals: Construct a similarity matrix S1 ∈ Rm×m, S1 := |AT A|.

Clustering the atoms: Construct a similarity matrix S2 ∈ Rk0×k0 , S2 := |AAT |.

In both cases the similarity matrix obtained is positive semidefinite and can be associ-

ated with a graph, G1 := {X,S1} and G2 := {D,S2}, where the data or the atoms are the sets

of vertexes with the corresponding Si as edge weights matrixes. This graph is partitioned

using standard spectral clustering algorithms to obtain the initialization for the algorithm

described in the previous section.

As we mentioned before, G1 is closely related with the `1-graph. In that case, the

weights of the graph are determined using the sparse decomposition of the signals with

the data itself as a dictionary. When the number of signals m is large, the computational

cost of constructing the similarity matrix is too expensive. Also the spectral clustering algo-

rithm requires the computation of the largest singular values (and corresponding singular

vectors), which is also computationally demanding when m is large (although not so de-

manding if only a few eigenvectors are needed). In the case of G2, clustering the atoms

bypasses these difficulties, the size of S2 depends on the significantly smaller size of the
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initial dictionary k0. This parameter does not depend on the amount of data, it just needs

to be large enough to model it properly, and is often just in the hundreds. Note that the

obtained sub-dictionaries may have different cardinalities (different ki), reflecting different

complexities of the associated clusters.

When the number of clusters, K , is large, the performance of the initial clusterization

decreases. We propose a more robust initialization. Starting with the whole set as the only

partition, at each iteration we subdivide in two sets each of the current partitions, keeping

the division that produces the biggest decrease in the cost energy defined in Equation (A.6).

The procedure stops when the desired number of clusters is reached. This can be applied

for any of the two graphs presented in this section, and such partition is consistent with the

energy driving the clustering.

4.2 Theoretical Guarantees

In this Section we show that, under certain ideal conditions, one can prove that the ini-

tialization step presented in the previous section produces a perfect clustering of the data.

Because this assumptions do not hold in general with real data, the result of the initial step

does not always give a correct clustering, but it gives a very good first approximation that

is be later refined by the iterative step.

Following the ideas presented in [16], let us consider the ideal situation in which every

signal in the K clusters can be exactly reconstructed as a sparse linear combination of

the atoms of a dictionary and that the subspace that they span (using all the atoms) are

independent, this is, that their sum is direct. Let us call those subspaces Si , i = 1, . . . , K .

Now, assume that the initial dictionary is composed of K (redundant) sub-dictionaries,

D0 = [D1, . . . ,DK], one corresponding to each cluster in the dataset. For simplicity we

assume that the atoms of the dictionary D0 are ordered but this is not required for proving

any of the results discussed here.
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Dataset k-means η= 0 η 6= 0

MNIST 21.2 6.9 3.0
USPS 22.3 2.9 2.0

ISOLET 20.0 6.0 1.5
Brodatz(x2) - 2.5 0.4

Table A.2: Error rate (in percentage) for the clustering algorithm discussed in Section 4. In MNIST

and USPS we used digits form 0 to 5 and for ISOLET we used the last 6 letters. We also tested
clustering combinations of 2 randomly chosen Brodatz textures. In this case, the result is the average
performance over 10 random realizations. In all cases, the results are shown with (η 6= 0), and
without (η= 0) added incoherence.

Then, given a vector x belonging to one of the subspaces, it is easy to show that the

optimal a in the `1-relaxation of `0 with this D0, will use only atoms from the correct block

of the initial dictionary, producing K connected components in both graphs G1 and G2. In

this situation a spectral clustering technique will successfully separate the clusters [32].

The hypothesis from [16] that the subspaces span independent subspaces is very strong.

In practice, different clusters very often have non trivial intersections. This is exactly what

is tackled by not considering highly coherent atoms in the comparison of the quality of the

sparse representations presented in Section 3.1. One can still prove that the solution to

the `0 problem will pick atoms from the correct block for a given x ∈ Si if the atoms of

the dictionaries that compose D0 satisfy maxd ||D
†
i d||1 < 1, where D†

i is the Moore-Penrose

pseudoinverse of Di and d is any atom of the dictionaries D j with j 6= i. This condition

is similar to the one required for the exact recovery of the orthogonal matching pursuit

algorithm [12]. It is related to the incoherence between atoms belonging to different dic-

tionaries. The proof can be made following similar ideas to the ones used in that case, and

is here omitted due to space limitations.
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4.3 Clustering Results

We now apply the proposed algorithm to several clustering problems and texture segmen-

tation. We first clustered the digits form 0 to 5 (K = 6) from the testing set of MNIST and

the training set of USPS (ignoring the labels, of course). We also clustered the last six letters

of ISOLET (K = 6), combining the standard training and testing sets. We further applied

the clustering scheme to the combined patches of randomly chosen samples of 2 textures

from the Brodatz database. The results are reported in Table A.2 for different values of

the incoherence penalty term η. The size of the initial dictionaries are k = 120 for USPS ,

k = 300 for MNIST and k = 90 for ISOLET. The dictionaries representing each cluster are of

size 60, 25 and 15 respectively. The initial clustering of the data was done using spectral

clustering on the graph G1. In all the cases involving images, the atoms learned for each

cluster were visually identifiable with the classes they represented.

Effect of imposing incoherence: As can be see in Table A.2, encouraging incoherence

in the dictionaries is of paramount importance, first to the initial dictionaries as internal

incoherence, and then between dictionaries during the iterative clustering. To further un-

derstand this effect, we show in Figure A.3 how the strength of the incoherence term,

controlled by the parameter η, affects the reconstruction error. Also shown is the actual

average incoherence obtained between the cluster dictionaries, that is the average value of

|dT
i d j| between all possible pairs of atoms di and d j from all the dictionaries involved.

Effect of the iterative clustering: In Figure A.4 we show an example of how the classi-

ficaion error is monotonically reduced for succesive iterations of the proposed algorithm,

thus empirically assessing its stability.

Texture segmentation: We also apply our clustering algorithm for the texture segmenta-

tion problem. The goal is to assign each pixel on an objective image to one of K possible

textures. The approach is related to the one used in [4] for the supervised case. Overlap-

ping 16× 16 patches from the original images and used as input signals.
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Figure A.3: Effect of incoherence in clustering performance of the ISOLET database. Left: average
incoherence between all the dictionaries vs. η. Right: classification error vs. η. Note that, due to
the small size of this dataset, fluctuations of ±1% such as the ones here observed are common.

Figure A.4: Classification error vs. number of iterations for the clustering algorithm when applied
to the ISOLET (left) and USPS (right) datasets.
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After each iteration (that is, before recomputing the dictionaries), we obtain K different

energy values for each patch, each corresponding to a candidate texture class. Following

the same strategy than in the object detection example of Section 3, we use the energy

value obtained for each patch to construct K different “energy images,” and combine such

energies to obtain the pixel-wise classification.

In Figure A.5 we show some of the results. The number of patches extracted was on

the order of several thousands, so the initialization with G2 was applied. The algorithm

gave sub-dictionaires that have a cardinality that intuitively reflects the complexity of the

corresponding texture (in other words, ki was not constant). We got very low rates of

missclassified pixels, for example in Figure A.5(c), where we obtained 0.25%, which is

better than the 0.37% obtained in [3] for the supervised case (which was, as far as we

know, the best reported result in the literature for that image).

5 Concluding Remarks

A framework for classification and clustering based on dictionary learning and sparse rep-

resentations was introduced in this paper. The basic idea is to simultaneously learn a set

of dictionaries that optimally represent each one of the classes. Toward this goal, we intro-

duced a new measurement of representation quality, a new term that promotes incoherence

between the dictionaries, and an initialization procedure that combines sparse coding, dic-

tionary learning, and spectral clustering. The clusters are allowed to share atoms. The

obtained model is much richer than standard subspace clustering algorithms, since multi-

ple subspaces represent a given class, and classes can have intersecting subspaces. Soft-

clustering can be obtained as well in this framework, and the experimental results can be

further improved using these soft measures in an SVM.

While we considered signals sparsely represented each one by a single dictionary, this
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Figure A.5: Texture segmentation results on mosaics from the Brodatz database. (a)-(d) above are
the mosaics and below the respective segmentation. The missclassification rates are 1.75%, 4.25%,
0.25% and 3.4% respectively. In (e) we show sample atoms from the final cluster dictionaries for
the textures in (a). The texture in the circle required k1 = 82 atoms, while the other one received
k2 = 118, which goes along with the intuition of larger complexity for this texture. (f) shows the
first and third iteration of the iterative clustering algorithm.
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Figure A.6: Example of the recovered digits from a mixture (left) with 60% of missing components
(red pixels in second figure), each digit is sparsely represented in its own learned dictionary, and
the signal is the result of the sum of two digits (mixture of two dictionaries). As with the case in this
paper with signals composed form a single dictionary, the technique described in [33] finds from
the corrupted mixture, the correct classification classes (dictionaries) and the reconstruction (last
two images).

can be extended to signals resulting from mixtures of dictionaries [33], Figure A.6.

Acknowledgments: Work supported by ONR, NGA, NSF, and ARO. Code follows [34].
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C-HiLasso: A Collaborative Hierarchical Sparse Modeling

Framework

Pablo Sprechmann,1† Ignacio Ramírez,1† Guillermo Sapiro1 and Yonina C. Eldar2

1University of Minnesota and 2Technion

Sparse modeling is a powerful framework for data analysis and process-
ing. Traditionally, encoding in this framework is performed by solving an `1-
regularized linear regression problem, commonly referred to as Lasso or Basis
Pursuit. In this work we combine the sparsity-inducing property of the Lasso at
the individual feature level, with the block-sparsity property of the Group Lasso,
where sparse groups of features are jointly encoded, obtaining a sparsity pat-
tern hierarchically structured. This results in the Hierarchical Lasso (HiLasso),
which shows important practical advantages. We then extend this approach to
the collaborative case, where a set of simultaneously coded signals share the
same sparsity pattern at the higher (group) level, but not necessarily at the
lower (inside the group) level, obtaining the collaborative HiLasso model (C-
HiLasso). Such signals then share the same active groups, or classes, but not
necessarily the same active set. This model is very well suited for applications
such as source identification and separation. An efficient optimization proce-
dure, which guarantees convergence to the global optimum, is developed for
these new models. The underlying presentation of the framework and opti-
mization approach is complemented by experimental examples and theoretical
results regarding recovery guarantees.
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1 Introduction and Motivation

Sparse signal modeling has been shown to lead to numerous state-of-the-art results in signal

processing, in addition to being very attractive at the theoretical level. The standard model

assumes that a signal can be efficiently represented by a sparse linear combination of atoms

from a given or learned dictionary. The selected atoms form what is usually referred to as

the active set, whose cardinality is significantly smaller than the size of the dictionary and

the dimension of the signal.

In recent years, it has been shown that adding structural constraints to this active set has

value both at the level of representation robustness and at the level of signal interpretation

(in particular when the active set indicates some physical properties of the signal); see

[1, 2, 3] and references therein. This leads to group or structured sparse coding, where

instead of considering the atoms as singletons, the atoms are grouped, and a few groups

are active at a time. An alternative way to add structure (and robustness) to the problem

is to consider the simultaneous encoding of multiple signals, requesting that they all share

the same active set. This is a natural collaborative filtering approach to sparse coding; see,

for example, [4, 5, 6, 7, 8, 9].

In this work we extend these approaches in a number of directions. First, we present

a hierarchical sparse model, where not only a few (sparse) groups of atoms are active at

a time, but also each group enjoys internal sparsity.1 At the conceptual level, this means

that the signal is represented by a few groups (classes), and inside each group only a few

members are active at a time. A simple example of this is a piece of music (numerous ap-

plications in genomics and image processing exist as well), where only a few instruments

are active at a time (each instrument is a group), and the sound produced by each instru-

ment at each instant is efficiently represented by a few atoms of the sub-dictionary/group

corresponding to it. Thereby, this proposed hierarchical sparse coding framework permits

1While we consider only 2 levels of sparsity, the proposed framework is easily extended to multiple levels.
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to efficiently perform source identification and separation, where the individual sources

(classes/groups) that generated the signal are identified at the same time as their repre-

sentation is reconstructed (via the sparse code inside the group). An efficient optimization

procedure, guaranteed to converge to the global optimum, is proposed to solve the hier-

archical sparse coding problems that arise in our framework. Theoretical recovery bounds

are derived, which guarantee that the output of the optimization algorithm is the true un-

derlying signal.

Next, we go one step beyond. Continuing with the above example, if we know that the

same few instruments will be playing simultaneously during different passages of the piece,

then we can assume that the active groups at each instant, within the same passage, will be

the same. We can exploit this information by applying the new hierarchical sparse coding

approach in a collaborative way, enforcing that the same groups will be active at all instants

within a passage (since they are of the same instruments and then efficiently representable

by the same sub-dictionaries), while allowing each group for each music instant to have its

own unique internal sparsity pattern (depending on how the sound of each instrument is

represented at each instant). We propose a collaborative hierarchical sparse coding frame-

work following this approach, (C-HiLasso), along with an efficient optimization procedure.

We then comment on results regarding the correct recovery of the underlying active groups.

The proposed optimization techniques for both HiLasso and C-HiLasso is based on the

Proximal Method [10], more specifically, on its particular implementation for sparse prob-

lems, Sparse Reconstruction by Separable Approximation (SpaRSA) [11]. This is an iterative

method which solves a subproblem at each iteration which, in our case, has a closed form

and can be solved in linear time. Furthermore, this closed form solution combines a vec-

tor thresholding and a scalar thresholding, naturally yielding to the desired hierarchical

sparsity patterns.

The rest of the paper is organized as follows: Section 2 provides an introduction to
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traditional sparse modeling and presents our proposed HiLasso and C-HiLasso models. We

discuss their relationship with the recent works of [2, 12, 13, 14, 15, 16]. In Section 3 we

describe the optimization techniques applied to solve the resulting sparse coding problems

and we discuss its relationship with other optimization methods recently proposed in the

literature [15, 17]. Theoretical recovery guarantees for HiLasso in the noiseless setting are

developed in Section 4, demonstrating improved performance when compared with Lasso

and Group Lasso. We also comment on existing results regarding correct recovery of group-

sparse patterns in the collaborative case. Experimental results and simulations are given in

Section 5, and finally concluding remarks are presented in Section 6.

2 Collaborative Hierarchical Sparse Coding

2.1 Background: Lasso and Group Lasso

Assume we have a set of data samples x j ∈ Rm, j = 1, . . . , n, and a dictionary of p atoms in

Rm, assembled as a matrix D ∈ Rm×p, D = [d1d2 . . .dp]. Each sample x j can be written as

x j = Da j+ε, a j ∈ Rp, ε ∈ Rm, that is, as a linear combination of the atoms in the dictionary

D plus some perturbation ε, satisfying ‖ε‖2 �




x j







2. The basic underlying assumption in

sparse modeling is that, for all or most j, the “optimal” a j has only a few nonzero elements.

Formally, if we define the `0 cost as the pseudo-norm counting the number of nonzero

elements of a j ,




a j







0 := |{k : ak j 6= 0}|, then we expect that




a j







0� p and




a j







0� m for

all or most j.

Seeking the sparsest representation a is known to be NP-hard. To determine a j in prac-

tice, a multitude of efficient algorithms have been proposed, which achieve high correct

recovery rates. The `1-minimization method is the most extensively studied recovery tech-

nique. In this approach, the non-convex `0 norm is replaced by the convex `1 norm, leading
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to

min
a∈Rp
‖a‖1 s.t.





x j −Da






2
2 ≤ ε. (2.1)

The use of general purpose or specialized convex optimization techniques allows for effi-

cient reconstruction using this strategy. The above approximation is known as the Lasso

[18] or Basis Pursuit [19, 20]. A popular variant is to use the unconstrained version

min
a∈Rp

1

2





x j −Da






2
2+λ‖a‖1 , (2.2)

where λ is an appropriate parameter value, usually found by cross-validation, or based on

statistical principles [21].

The fact that the ‖·‖1 regularizer induces sparsity in the solution a j is desirable not only

from a regularization point of view, but also from a model selection perspective, where

one wants to identify the relevant factors (atoms) that conform each sample x j . In many

situations, however, the goal is to represent the relevant factors not as singletons but as

groups of atoms. For a dictionary of p atoms, we define groups of atoms through their

indices, G ⊆ {1, . . . , p}. Given a group G of indexes, we denote the sub-dictionary of the

columns indexed by them as D[G], and the corresponding set of reconstruction coefficients

as a[G]. Define G = {G1, . . . , Gq} to be a partition of {1, . . . , p}.2 In order to perform model

selection at the group level (relative to the partition G ), the Group Lasso problem was

introduced in [1],

min
a∈Rp

1

2





x j −Da






2
2+λψG (a), (2.3)

where ψG is the Group Lasso regularizer defined in terms of G as ψG (a) :=
∑

G∈G





a[G]






2.

The function ψG can be seen as a generalization of the `1 regularizer, as the latter arises

from the special case G =
�

{1}, {2}, . . . , {p}
	

(the groups are singletons), and as such, its

2While in this paper we concentrate and develop the important non-overlapping case, it will be clear that
the concepts of collaborative hierarchical sparse modeling introduced here apply to the case of overlapping
groups as well.
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Figure B.1: Sparsity patterns induced by HiLasso (left) and C-HiLasso (right) model selection pro-
grams. Notice that the C-HiLasso imposes the same group-sparsity pattern in all the samples (same
class), whereas the in-group sparsity patterns can vary between samples (samples themselves are
different).

effect on the groups of a is also a natural generalization of the one obtained with the Lasso:

it “turns on/off” atoms in groups.

We can always consider the “noiseless” sparse coding problem mina∈Rp

¦

ψ(a) : x j = Da
©

,

for a generic regularizerψ(·), as the limit of the Lagrangian sparse coding problem mina∈Rp

n

1
2





x j −Da






2
2+λψ(a)

o

when λ→ 0. In the remainder of this section, as well as in Section 3, we only present the

corresponding Lagrangian formulations.

2.2 The Hierarchical Lasso

The Group Lasso trades sparsity at the single-coefficient level with sparsity at a group level,

while, inside each group, the solution is generally dense. Let us consider for example

that each group is a sub-dictionary trained to efficiently represent, via sparse modeling, an

instrument, a type of image, or a given class of signals in general. The entire dictionary D

is then appropriate to represent all classes of the signal as well as mixtures of them, and

Group Lasso will properly represent (dense) mixtures with one group or sub-dictionary per

class. At the same time, since each class is properly represented in a sparse mode via its

corresponding group or sub-dictionary, we expect sparsity inside its groups as well (which

is not achieved by Group Lasso, whose solutions are dense inside each group). This will

become even more critical in the collaborative case, where signals will share groups because
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they are of the same class, but will not necessarily share the full active sets, since they are

not the same signal. To achieve the desired in-group sparsity, we simply re-introduce the `1

regularizer together with the group regularizer, leading to the proposed Hierarchical Lasso

(HiLasso) model,3

min
a∈Rp

1

2





x j −Da






2
2+λ2ψG (a) +λ1 ‖a‖1 . (2.4)

The hierarchical sparsity pattern produced by the solutions of (2.4) is depicted in Fig-

ure B.1(left). For simplicity of the description, we assume that all the groups have the same

number of elements. The extension to the general case is obtained by multiplying each

group norm by the square root of the corresponding group size. This model then achieves

the desired effect of promoting sparsity at the group/class level while at the same time lead-

ing to overall sparse feature selection. As mentioned above, additional levels of hierarchy

can be considered as well, e.g., with groups inside the blocks. This is relevant for example

in audio analysis.

As with models such as Lasso and Group Lasso, the optimal parameters λ1 and λ2 are

application and data dependent. In some specific cases, closed form solutions exist for

such parameters. For example, for signal restoration in the presence of noise using Lasso

(λ2 = 0), the GSURE method provides a simple way to compute the optimal λ1 [21]. As

extending such methods to HiLasso (or the C-HiLasso model presented next) is beyond

the scope of this work, we rely on cross-validation for the choice of such parameters. The

selection of λ1 and λ2 has an important influence on the sparsity of the obtained solution.

Intuitively, as λ2/λ1 increases, the group constraint becomes dominant and the solution

tends to be more sparse at a group level but less sparse within groups (see Figure B.2).

This relation allows in practice to intuitively select a set of parameters that performs well.

We also noticed empirically that the selection of the parameters is quite robust, since small

variations in their numerical value don’t change considerably the obtained results.

3We can similarly define a hierarchical sparsity model with `0 instead of `1.
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Some recent modeling frameworks for sparse coding do not rely on the selection of

such model parameters, e.g., following the Minimum Description Length criterion in [22],

or non-parametric Bayesian techniques in [23]. Applying such techniques to the here pro-

posed models is subject of future research.

2.3 Collaborative Hierarchical Lasso

In numerous applications, one expects that certain collections of samples x j share the same

active components from the dictionary, that is, that the indices of the nonzero coefficients

in a j are the same for all the samples in the collection. Imposing such dependency in

the `1 regularized regression problem gives rise to the so called collaborative (also called

“multitask” or “simultaneous”) sparse coding problem [4, 8, 9, 24]. Considering the coef-

ficients matrix A = [a1, . . . ,an] ∈ Rp×n associated with the reconstruction of the samples

X= [x1, . . . ,xn] ∈ Rm×n, this model is given by

min
A∈Rp×n

1

2
‖X−DA‖2F +λ

p
∑

k=1





ak






2, (2.5)

where ak ∈ Rn is the k-th row of A, that is, the vector of the n different values that the

coefficient associated to the k-th atom takes for each sample j = 1, . . . , n. If we now extend

this idea to the Group Lasso, we obtain a collaborative Group Lasso (C-GLasso) formulation,

min
A∈Rp×n

1

2
‖X−DA‖2F +λψG (A), (2.6)

whereψG (A) =
∑

G∈G





AG






F , and AG is the sub-matrix formed by all the rows belonging to

group G. This regularizer is the natural collaborative extension of the regularizer in (2.3).

In this paper, we take an additional step and treat this together with the hierarchical



79

Figure B.2: Effect of different combinations of λ1 and λ2 on the solutions of the HiLasso coding
problem. Three cases are given in which we want to recover a sparse signal (red crosses) a0 by
means of the solution a of the HiLasso problem (blue dots). In this example we have two active
groups out of ten possible (the sub dictionaries associated to each group have 30 atoms) and a0 = 8
(four non-zero coefficient per active group). The estimate that is closest to a0 in `1 norm is shown
in the top left. As the ratio λ2/λ1 increases (bottom left), the level sets of the regularizer ψG (·)
become rounder, thus encouraging denser solutions. This is depicted in the rightmost figure for a
simple case of q = 1 groups. Increasing λ1 again (bottom right) increases sparsity, although here
the final effect is too strong and some non-zero coefficients are not detected.
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extension presented in the previous section. The combined model that we propose, C-

HiLasso, is given by

min
A∈Rp×n

1

2
‖X−DA‖2F +λ2ψG (A) +λ1

n
∑

j=1





a j







1 . (2.7)

The sparsity pattern obtained using (2.7) is shown in Figure B.1(right). The C-GLasso is a

particular case of our model when λ1 = 0. On the other hand, one can obtain independent

Lasso solutions for each xi by setting λ2 = 0. We see that (2.7) encourages all the signals

to share the same groups (classes), while the active set inside each group is signal depen-

dent. We thereby obtain a collaborative hierarchical sparse model, with collaboration at

the class level (all signals collaborate to identify the classes), and freedom at the individual

levels inside the class to adapt to each particular signal. This new model is particularly well

suited, for example, when the data vectors have missing components. In this case com-

bining the information from all the samples is very important in order to obtain a correct

representation and model (group) selection. This can be done by slightly changing the data

term in (2.7). For each data vector x j one computes the reconstruction error using only the

observed elements. Note that the missing components do not affect the other terms of the

equation. Examples will be shown in Section 5.

2.4 Relationship to Recent Literature

A number of recent works have addressed hierarchy, grouping and collaboration within the

sparse modeling community. We now discuss the ones most closely related to the proposed

HiLasso and C-HiLasso models.

In [2], the authors propose a general framework in which one can define a regular-

ization term to encourage a variety of sparsity patterns, and provide theoretical results
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(different to the ones developed here) for the single-signal case. The HiLasso model pre-

sented here, in the single signal scenario, can be seen as a particular case of that model

(where the groups in [2] should be blocks and singletons), although the particularly and

important case of hierarchical structure introduced here is not mentioned in that paper.

In [12] the authors simultaneously (see [25]) proposed a model that coincides with ours

again in the single-signal scenario. None of these approaches develop the collaborative

framework introduced here, nor the theoretical guarantees. The recovery of mixed signals

with `0 optimization was addressed in [16]. This model does not include block sparsity (no

hierarchy), collaboration, or the theoretical results we obtain here.

The special case of C-HiLasso when λ1 = 0, C-GLasso, is investigated in [26], where

a theoretical analysis of the signal recovery properties of the model is developed. Collab-

orative coding with structured sparsity has also been used recently in the context of gene

expression analysis [13, 14]. In [13], the authors propose a model, that can be interpreted

as a particular case of the collaborative approach presented here, in which a set of signals

is simultaneously coded using a small (sparse) number of atoms of the dictionary. They

modify the classical collaborative sparse coding regularization so that each signal can use

any subset of the detected atoms. This is equivalent to our model when the groups have

only one element and therefore there is no hierarchy in the coding. A collaborative model

is presented in [14], where signals sharing the same active atoms are grouped together in

a hierarchical way by means of a tree structure. The regularization term proposed is anal-

ogous to the one proposed in our work, but it is used to group signals rather than atoms

(features), having once again no hierarchical coding.

Tree-based sparse coding has also been used recently to learn dictionaries [15, 17].

Under this model, if a particular learned atom is not used in the decomposition of a signal,

then none of its descendants (in terms of the given tree structure) can be used. Although

not explicitly considered in these works, the HiLasso model is an important particular case,
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among the wide spectrum of hierarchical sparse models considered in this line of work,

where the hierarchy has two levels and no single atoms are in the upper level.

To conclude, while particular instances of the proposed C-HiLasso have been recently

reported in the literature, none of them are as comprehensive. C-HiLasso includes both col-

laboration, at a block/group level, and hierarchical coding. Such collaborative hierarchical

structure is novel and fundamental to address new important problems such as collabora-

tive source identification and separation. The new theoretical results presented here extend

the block sparsity results of [3, 27], complementing the modeling and algorithmic work.

3 Optimization

3.1 Single-Signal Problem: HiLasso

In the last decade, optimization of problems of the form of (2.2) and (2.3) have been deeply

studied, and there exist very efficient algorithms for solving them. Recently, Wright et. al

[11] proposed a framework, SpaRSA, for solving the general problem

min
a∈Rp

f (a) +λψ(a). (3.8)

be a smooth and convex function, while ψ : Rp → R only needs to be finite and convex

in Rp. This formulation, which is a particular case of the Proximal Method framework

developed by Nesterov [10], includes as important particular cases the Lasso, Group-Lasso

and HiLasso problems by setting f (·) as the reconstruction error and then choosing the

corresponding regularizers for ψ(·). When the regularizer, ψ(·), is group separable, the

optimization can be subdivided into smaller problems, one per group. The framework

becomes powerful when these sub-problems can be solved efficiently. This is the case of

the Lasso and Group Lasso (with non overlapping groups) settings, and also of the HiLasso,
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as we will show later in this Section. In all cases, the solution of the sub-problems are

obtained in linear time.

The SpaRSA algorithm generates a sequence of iterates {a(t)}t∈N that, under certain

conditions, converges to the solution of (3.8). At each iteration, a(t+1) is obtained by

solving

min
z∈Rp
(z− a(t))ᵀ∇ f (a(t)) +

α(t)

2








z− a(t)









2

2
+λψ(z), (3.9)

for a sequence of parameters {α(t)}t∈N, α(t) = α0η
t , where α0 > 0 and η > 1 need to be

chosen properly for the algorithm to converge (see [11] for details). It is easy to show that

(3.9) is equivalent to

min
z∈Rp

1

2








z− u(t)









2

2
+
λ

α(t)
ψ(z), (3.10)

where u(t) = a(t)− 1
α(t)
∇ f (a(t)). In this new formulation, it is clear that the first term in the

cost function can be separated element-wise. Thus, when the regularization function ψ(z)

is group separable, so is the overall optimization, and one can solve (3.10) independently

for each group, leading to

a(t+1)
[G] = arg min

z∈R|G|

1

2








z− u(t)[G]










2

2
+
λ

α(t)
ψG (z),

z[G] being the corresponding variable for the group. In the case of HiLasso, this becomes,

a(t+1)
[G] = arg min

z∈R|G|

1

2
‖z−w‖22+

λ2

α(t)
‖z‖2+

λ1

α(t)
‖z‖1 , (3.11)

where we have defined w = u(t)[G]. Problem (3.11) is a second order cone program (SOCP),

for which one could use generic solvers. However, since it needs to be solved many times

within the SpaRSA iterations, it is crucial to solve it efficiently. It turns out that (3.11) admits

a closed form solution with cost linear in the dimension of w. By inspecting the subgradient
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of (3.11) for the case where the optimum z∗ 6= 0,

w−
�

1+
λ̃2

‖z∗‖2

�

z∗ ∈ λ̃1∂




z∗






1 ,

where we have defined λ̃2 = λ2/α
(t) and λ̃1 = λ1/α

(t). If we now define C(z∗) = 1 +

λ̃2/‖z∗‖2, we observe that each element of C(z∗)z∗ is the solution of the well known scalar

soft thresholding operator,

z∗i =
1

C(z∗)
sgn(wi)max{0, |wi| − λ̃1}=

hi

C(z∗)
, i = 1, . . . , g, (3.12)

where we have defined hi = sgn(wi)max{0, |wi|− λ̃1}, the result of the scalar thresholding

of w. Taking squares on both sides of (3.12) and summing over i = 1, . . . , g we obtain





z∗






2
2 = C2(z∗)‖h‖22 =

‖z∗‖22
(‖z∗‖2+ λ̃2)2

‖h‖22 ,

from which the equality ‖z∗‖2 = ‖h∗‖2 − λ̃2 follows. Since all terms are positive, this can

only hold as long as ‖h∗‖2 > λ̃2, which gives us a vector thresholding condition on the

solution z∗ in terms of ‖h‖2. It is easy to show that ‖h∗‖2 ≤ λ̃2 is a sufficient condition for

z∗ = 0. Thus we obtain,

a(t+1)
[G] =







max{0,‖h‖2−λ̃2}
‖h‖2

h , ‖h‖2 > 0

0 , ‖h‖2 = 0.
(3.13)

The above expression requires g scalar thresholding operations, and one vector threshold-

ing, which is also linear with respecto to the group size g. Therefore, for all groups, the

cost of solving the subproblem (3.11) is linear in m, the same as for Lasso and Group Lasso.

The complete HiLasso optimization algorithm is summarized in Algorithm 2. The param-

eter η has very little influence in the overall performance (see [11] for details); we used
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Algorithm 2: HiLasso optimization algorithm.
Input: Data X, dictionary D, group set G , constants α0 > 0, η > 1, c > 0,

0< αmin < αmax
Output: The optimal point a∗

Initialize t := 0,a(0) := 0;
while stopping criterion is not satisfied do

choose α(t) ∈ [αmin,αmax];
set u(t) := a(t)− 1

α(t)
∇ f (a(t));

while stopping criterion is not satisfied do
// Here we use the group separability of (3.10) and solve (3.11) for each group
for i := 1 to q do

Compute a(t+1)
[G] as the solution to (3.13);

end
set α(t+1) := ηα(t);

end
set t := t + 1 ;

end

η = 2 in all our experiments. Note that, as expected, the solution to the sub-problem for

the cases λ2 = 0 or λ1 = 0, corresponds respectively to scalar soft thresholding and vector

soft thresholding. In particular, when λ2 = 0, the proposed optimization reduces to the

Iterative Soft Thresholding algorithm [28].

3.2 Optimization of the Collaborative HiLasso

The multi-signal (collaborative) case is equivalent to the one-dimensional case where the

signal is a concatenation of the columns of X, and the dictionary is an nm×np block-

diagonal matrix, where each of the n blocks is a copy of the original dictionary D. However,

in practice, it is not needed to build such (possibly very large) dictionary, and we can oper-

ate directly with the matrices D and X to find A. If we define the matrix U(t) ∈ Rm×n whose
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i-th column is given by u(t)i = a(t)i −
1
α(t)
∇ f (a(t)i ), we get the following SpaRSA iterates,

A(t+1) = arg min
Z∈Rm×n

1

2








Z−U(t)









2

F
+
λ2

α(t)
‖Z‖F +

λ1

α(t)

n
∑

j=1





z j







1 ,

which again is group separable, so that it can be solved as q independent problems in the

corresponding bands of U(t),

(A(t+1))G = arg min
Z∈Rg×n

1

2








Z− (U(t))G









2

F
+
λ2

α(t)
‖Z‖F +

λ1

α(t)

n
∑

j=1





z j







1 .

The correspondent closed form solutions for these subproblems, which are obtained in an

analogous way to (3.12)–(3.13), are given by

(A(t+1))G =







max{0,‖H‖F−λ̃2}
‖H‖F

H , ‖H‖F > 0

0 , ‖H‖F = 0
, hi j = sgn(wi j)max{0, |wi j|−λ̃1}, (3.14)

and we have defined W := (U(t))G .

As mentioned in Section 2.4, [17] addresses a wide spectrum of hierarchical sparse

models for coding and dictionary learning. They propose a proximal method optimization

procedure that, when restricted to the formulation of HiLasso, is very similar to the one

developed in Section 3.1. The main difference with our method is that they solve the sub-

problem (3.10) using a dual approach (based on conic duality) that finds the exact solution

in a finite number of operations. Our method, being tailored to the specific case of HiLasso,

provides such solution in closed form, requiring just two thresholdings, both linear in the

dimension of X, n×m.
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4 Theoretical guarantees

In our current theoretical analysis, we study the case of a single measurement vector (sig-

nal) x (we comment on the collaborative case at the end of this section), and assume that

there is no measurement noise or perturbation, so that x = Da. Without loss of general-

ity, we further assume that the cardinality |Gr | = g, r = 1, . . . , q, that is, all groups in G

have the same size. The goal is to recover the code a, from the observed x, by solving the

noise-free HiLasso problem:

min
a∈Rp

�

λψG (a) + (1−λ)‖a‖1 s.t. x= Da
	

. (4.15)

Note that we have replaced the two regularization parameters λ1 and λ2 by a single param-

eter λ, since scaling does not effect the optimal solution. Therefore, we can always assume

that λ1+λ2 = 1.

Our goal is to develop conditions under which the HiLasso program of (4.15) will re-

cover the true unknown vector a. As we will see, the resulting set of recoverable signals is a

superset of those recoverable by Lasso, that is, HiLasso is able to recover signals for which

Lasso (or Group Lasso) will fail to do so.

We assume throughout this section that a has group sparsity k, namely, no more than k

of the group vectors a[Gi], i = 1, . . . , q, have non-zero norm. In addition, within each group,

we assume that not more than s elements are non zero, that is, ‖a[G]‖0 ≤ s.

For λ = 1, (4.15) reduces to the Group Lasso problem, (2.3), whereas with λ = 0,

(4.15) becomes equivalent to the Lasso problem, (2.2). Both cases have been treated previ-

ously in the literature and sufficient conditions have been derived on the sparsity levels and

on the dictionary D to ensure that the resulting optimization problem recovers the true un-

known vector a. For example, in [3, 29, 30], conditions are given in terms of the restricted

isometry property (RIP) of D. In an alternative line of work, recovery conditions are based
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on coherence measures, which are easier to compute [27, 31]. Here, we follow the same

spirit and consider coherence bounds that ensure recovery using the HiLasso approach.

We also draw from [9] to briefly describe conditions under which the probability of error

of recovering the correct groups, using the special case of the C-HiLasso with λ1 = 0 (C-

GLasso), falls exponentially to 0 as the number of collaborating samples n grows. Finally,

recent theoretical results on block sparsity were reported in [32]. In particular, bounds

on the number of measurements required for block sparse recovery were developed under

the assumption that the measurement matrix D has a basis of the null-space distributed

uniformly in the Grassmanian. The model is a block-sparse model, without hierarchical or

collaborative components.

In this section we extend the group-wise indexing notation to refer both to subsets of

rows and columns of arbitrary matrices as W[F,G] := {wi j : i ∈ F, j ∈ G}. This is, W[F,G] =

IT
[F]WJ[G], where I and J are the identity matrices of the column and row spaces of W

respectively. We define the sets Ω =
�

1,2, . . . , p
	

and Γ =
�

1, 2, . . . , g
	

, and use S to denote

the complement of a set of indices S, either with respect to Ω or Γ, depending on the

context. The set difference between S and T is denoted as S \ T , ; represents the empty

set, and |S| denotes the cardinality of S.

4.1 Block-Sparse Coherence Measures

We begin by reviewing previously proposed coherence measures. For a given dictionary D,

the (standard) coherence is defined as µ :=maxi, j 6=i∈Γ |d
ᵀ
i d j|. This coherence was extended

to the block-sparse setting in [27], leading to the definition of block coherence:

µB :=max
�

1

g
ρ(Dᵀ[G]D[F]), G, F ∈ G , G 6= F

�

,
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where ρ(·) is the spectral norm, that is, ρ(Z) := λ1/2
max(Z

ᵀZ), with λmax(W) denoting the

largest eigenvalue of the positive semi-definite matrix W. An alternate atom-wise measure

of block coherence is given by the cross coherence,

χ :=max
¦

max
¦

|dT
i d j|, i ∈ G, j ∈ F

©

G, F ∈ G , G 6= F
©

. (4.16)

When g = 1 (each block is a singleton), D[Gr] = dr , so that as expected, χ = µB = µ.

While µB and χ quantify global properties of the dictionary D, local block properties are

characterized by the sub-coherence, defined as

ν :=max
¦

max
¦

|dT
i d j|, i, j ∈ G, i 6= j

©

G ∈ G
©

. (4.17)

We define ν = 0 for g = 1. Clearly, if the columns of D[G] are orthonormal for each group

G, then ν = 0. Assuming the columns of D have unit norm, it can be easily shown that µ,

ν , χ and µB all lie in the range [0,1]. In addition, we can easily prove that ν ,µB,χ ≤ µ.

In our setting, a is block sparse, but has further internal structure: each sub-vector of a

is also sparse. In order to quantify our ability to recover such signals, we expect that an

appropriate coherence measure will be based on the definition of block sparsity, but will

further incorporate the internal sparsity as well. Let M := DᵀD denote the Gram matrix

of D. Then, the standard block coherence µB is defined in terms of the largest singular

value of an off-diagonal g×g sub-block of M. In a similar fashion, we will define sparse

block coherence measures in terms of sparse singular values. As we will see, two different

definitions will play a role, depending on where exactly the sparsity within the block enters.

To define these, we note that the spectral norm ρ(Z) of a matrix Z can be defined as

ρ(Z) :=max
u,v
|uᵀZv| s.t. ‖u‖2 = 1,‖v‖2 = 1.
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Alternatively, we can define ρ(Z) as the largest singular value of Z, ρ(Z) := σmax(Z) =
p

λmax(ZᵀZ),

λmax(Z
ᵀZ) :=max

v
vᵀ(ZᵀZ)v s.t. ‖v‖2 = 1.

We now develop sparse analogs of ρ(Z) and λmax(ZᵀZ). As we will see, the simple square-

root relation no longer holds in this case. The largest sparse singular value is defined as

[33]:

ρss(Z) :=max
u,v
|uᵀZv| s.t. ‖u‖2 = 1,‖v‖2 = 1,‖u‖0 ≤ s,‖v‖0 ≤ s. (4.18)

Similarly, the largest sparse eigenvalue of ZᵀZ is defined as [33, 34, 35],

λs
max(Z

ᵀZ) :=max
v

vᵀ(ZᵀZ)v s.t. ‖v‖2 = 1,‖v‖0 ≤ s. (4.19)

The sparse matrix norm is then given by

ρs(Z) :=
p

λs
max(Z

ᵀZ). (4.20)

Note that, in general, ρs(Z) is not equal to ρss(Z). It is easy to see that ρss(Z) ≤ ρs(Z).

For any matrix Z, ρss(Z) = ρ(Z[F,G]) and ρs(Z) = ρ(Z[T]), where F, G, T are subsets of

Γ =
�

1,2, . . . , g
	

of size s, chosen to maximize the corresponding singular value. Using

(4.18) and (4.20), we define two sparse block coherence measures:

µB
ss := max

�

1

g
ρss(Dᵀ[G]D[F]), G, F ∈ G , G 6= F

�

, (4.21)

µB
s := max

�

1

g
ρs(Dᵀ[G]D[F]), G, F ∈ G , G 6= F

�

. (4.22)

The choice of scaling is to ensure that µB
s,µB

ss ≤ µB.

Note that, while ρs(Z) (also referred to in the literature as sparse principal component
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analysis (SPCA)) and ρss(Z) are in general NP-hard to compute, in many cases they can be

computed exactly, or approximated, using convex programming techniques [33, 34, 35].

The following proposition establishes some relations between these new definitions and

the standard coherence measures.

Proposition 1. The sparse block-coherence measures µB
ss,µB

s satisfy

0≤ µB
ss ≤

s

g
µ, 0≤ µB

s ≤
r

s

g
µ. (4.23)

Proof: The inequalities µB
ss,µB

s ≥ 0 follow immediately from the definition. We obtain

the upper bounds by rewriting ρss(Z) and ρs(Z) and then using the Geršgorin Theorem,

ρss(Z) = λ1/2
max(Z

ᵀ
[F,G]Z[F,G])

(a)
≤

s

max
l

s
∑

r=1

|el r | ≤
q

s max
l,r
|el r |, (4.24)

ρs(Z) = λ1/2
max(Z

ᵀ
[T]Z[T])

(b)
≤

s

max
l

s
∑

r=1

|e′l r | ≤
q

s max
l,r
|e′l r |, (4.25)

where el r and e′l r are the elements of E = Zᵀ[F,Γ]Z[F,Γ] and E′ = ZᵀZ, and (a), (b) are a

consequence of Geršgorin’s disc theorem.

The entries of Z = Dᵀ[Gi]
D[G j] for i 6= j have absolute value smaller than or equal to µ,

and the size of Z is g × g. Therefore, |ek`| ≤ sµ2 and |e′k`| ≤ gµ2. Substituting these values

into (4.24) and (4.25) concludes the proof of the upper bounds on µB
ss and µB

s.

4.2 Recovery Proof

Our main recovery result is stated as follows. Suppose that a is a block k-sparse vector

with blocks of length g, where each block has sparsity exactly s,4 and let x = Da. We rear-

range the columns in D and the coefficients in a so that the first k groups, {G1, G2, . . . , Gk}
4These conditions are non-limiting, since we can always complete the vector with zeros.
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Figure B.3: Left: Indexing conventions, here shown for g = 8, k = 2 and s = 3. Shaded regions cor-
respond to active elements/atoms. Active blocks are light-colored, and active elements/coefficients
are dark colored. Here a′ represents an alternate representation of x, x= Da′. Blocks and atoms that
are not part of the true solution a are marked in red. Right: partitioning of a matrix W performed
by the measure ρ[E ,F ](W) with E = {E1, E2} and F = {F1, F2, F3}, where |Ei |= s and |F j |= g.

correspond to the non-zero (active) blocks. Within each block Gi , i ≤ k, the first s indices,

represented by the set Si , correspond to the s nonzero coefficients in that block, and the

index set Ti = Gi \ Si represents its (g − s) inactive elements, so that Gi = [Si Ti]. The

set G0 =
⋃k

i=1 Gi contains the indices of all the active blocks of a, whereas G0 = Ω \ G

contains the inactive ones. Similarly, S0 =
⋃k

i=1 Si contains the indices of all the active co-

efficients/atoms in a and D respectively, S0 = Ω\S0 indexes the inactive coefficients/atoms

in a/D, and T0 =
⋃k

i=1 Ti indexes the inactive coefficients/atoms within the active blocks.

These indexing conventions are exemplified in Figure B.3(left). With these conventions we

can write x= D[G0]a[G0] = D[S0]a[S0].

An important assumption that we will rely on throughout, is that the columns of D[G0]

must be linearly independent for any G0 as defined above.Under this assumption, Dᵀ[S0]
D[S0]

is invertible and we can define the pseudo-inverse H := (Dᵀ[S0]
D[S0])

−1Dᵀ[S0]
. For reasons

that will become clear later, we will also need a second, oblique pseudo-inverse, Q :=

(Dᵀ[S0]
(I − P)D[S0])

−1Dᵀ[S0]
(I − P), where P is an orthogonal projection onto the range of
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D[T0], that is, PD[T0] = D[T0]. It is easy to check that

QD[T0] = 0, and QD[S0] = I. (4.26)

Equipped with these definitions we can now state our main result.

Theorem 1. Let a be a block k-sparse vector with blocks of length g, where each block has

sparsity s. Let x= Da for a given matrix D. A sufficient condition for the HiLasso algorithm

(4.15) to recover a from x is that, for some α≤ 1,

ρ[S0,G 0]
(QD[G0]

) < α, (4.27)

‖HD[G0]
‖1,1 < γ, γ≤ 1+

λ(1−α)
p

g(1−λ)
, (4.28)

‖HD[T0]‖1,1 < 1. (4.29)

Here ρ[E ,F ](Z) := maxF∈F
∑

E∈E ρ(Z[E,F]), is the block spectral norm defined in [27], the

blocks defined by the sets of index sets E and F (see Figure B.3(right)). We also define

S0 =
�

Si : i = 1, . . . , k
	

, G 0 =
�

Gi : i = k+ 1, . . . , q
	

and T0 =
�

Ti : i = 1, . . . , k
	

. Finally,

‖Z‖1,1 :=maxr





zr







1, where zr is the r-th column of Z.

The above theorem can be interpreted as follows. With γ = 1, the conditions (4.28)-

(4.29) are sufficient both for Lasso (λ = 0) and HiLasso to recover a. However, if there

exists a γ > 1 for which condition (4.28) holds, then HiLasso will be able to recover a in a

situation where Lasso is not guaranteed to do so. The idea is that, for 0 < λ < 1, HiLasso

trades off between the minimization of its `1 and `2 terms, by tightening the `2 term (α≤ 1)

to improve group recovery, while loosening the `1 term (γ > 1). Also, although not yet clear

from conditions (4.27)–(4.29), we will see in Theorem 2 that the final data independent

bounds are also a relaxation of the ones corresponding to Group Lasso when the solutions

are block-dense. Therefore, the proposed model outperforms both standard Lasso and
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Group Lasso with regard to recovery guarantees. This is also reflected in the experimental

results presented in the next section.

The sufficient conditions (4.27)–(4.29) depend on D[S0] and therefore on the nonzero

blocks in a, G0, and the nonzero locations within the blocks, S0, which, of course, are not

known in advance. Nonetheless, Theorem 2 provides sufficient conditions ensuring that

(4.27)–(4.29) hold, which are independent of the unknown signals, and depend only on

the dictionary D.

We now prove Theorem 1.

Proof: To prove that (4.15) recovers the correct vector a, let a′ be an alternative solution

satisfying x = Da′. We will show that λψG (a) + (1− λ)‖a‖1 < λψG (a′) + (1− λ)




a′






1.

Let the set G0 contain the indices of all elements in the active blocks of a. Let G′0 contain

the indices of the active blocks in a′. Then x= D[G0]a[G0] = D[G′0]a
′
[G′0]

.

By our assumptions, in each block of a[G0] there are exactly s nonzero values. Let the

set S0 ⊂ G0 contain the indices of all nonzero elements in a. We thus have |S0| = ks. Using

(4.26) we can write

a[S0] = QD[S0]a[S0] = QD[G0]a[G0] = QD[G′0]a
′
[G′0]

. (4.30)

To proceed, we separate G′0 into two parts: B = G′0 ∩ G0, and B = G′0 \ G0, so that

G′0 = [B B] and D[G′0]a
′
[G′0]
= D[B]a

′
[B]+D[B]a

′
[B]

. We can now rewrite (4.30) as

a[S0] = QD[B]a
′
[B]+QD[B]a

′
[B]

, (4.31)

and use the triangle inequality to obtain

ψG (a[S0])≤ψG (QD[B]a
′
[B]) +ψG (QD[B]a

′
[B]
). (4.32)
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We now analyze the two terms in the right hand side of (4.32) using [27, Lemma 3]:

Lemma 1. Let v ∈ Rp be a vector, Z ∈ Rm×p be a matrix, F be a partition of Ω =
�

1,2, . . . , p
	

, and E a partition of {1, . . . , m}. We then have that,ψG (Zv)≤ ρ[E ,F ](Z)ψG (v).5

Since B ⊂ G0, it follows from (4.27) that ρ[S0,B](QD[B]) < α (here B is the set of the

blocks that comprise B). To analyze ρ[S0,B](QD[B]), we use its definition,

ρ[S0,B](QD[B]) =max
F∈B

∑

E∈S0

ρ((QD)[E,F]) =max
F∈B

∑

S j : j=1,...,k

ρ((QD)[S j ,F]), (4.33)

and analyze each of its terms. By definition of B , each F ∈ B corresponds to some Gi =

[Si Ti] for some i ≤ k. We can thus write (QD)[S j ,F] = [(QD)[S j ,Si] (QD)[S j ,Ti] ]. Then,

by recalling that QD[T0] = 0 we see that (QD)[S j ,Ti] = 0 for all i, j. Now, when i = j we

have (QD)[S j ,Si] = I, thus ρ((QD)[S j ,F]) = ρ([ I 0 ]) = 1. When i 6= j, (QD)[S j ,Si] = 0, and

ρ((QD)[S j ,F]) = ρ([0 0 ]) = 0 in that case. From (4.33) we conclude that ρ[S0,B](QD[B]) =

1. Plugging into (4.32) leads to

ψG (a)<ψG (a
′
[B]) +αψG (a

′
[B]
). (4.34)

For the `1 term, we follow the same path as (4.30) and (4.31), now using the Moore-

Penrose pseudo-inverse H instead, yielding a[S0] = HD[B]a
′
[B] + HD[B]a

′
[B]

, from which

‖a‖1 ≤







HD[B]a
′
[B]










1
+







HD[B]a
′
[B]










1
follows. Using the fact that ‖Wv‖1,1 ≤ ‖W‖1,1 ‖v‖1 [31],

we get ‖a‖1 ≤




HD[B]






1,1








a′[B]










1
+







HD[B]










1,1








a′
[B]










1
. Now, since B ⊂ G0, and





HD[G0]







1,1 =

1, we have that




HD[B]






1,1 ≤ 1. Together with condition (4.29) this yields,

‖a‖1 <







a′[B]










1
+ γ







a′
[B]










1
. (4.35)

5Note that the statement of Lemma 1 as shown here is actually a slight generalization of [27, Lemma 3],
where the groups in the partitions need not have the same size.
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Combining (4.34) and (4.35) into the HiLasso cost function we get

λψG (a) + (1−λ)‖a‖1 < λ
h

ψG (a
′
[B]) +αψG (a

′
[B]
)
i

+ (1−λ)
�






a′[B]










1
+ γ







a′
[B]










1

�

.

(4.36)

Now, to finish the proof, we need to bound the right hand side of (4.36) by λψG (a′)+ (1−

λ)




a′






1, in order to show that the alternate a′ is not a minimum of the HiLasso problem.

For any γ satisfying

γ≤ 1+
λ(1−α)ψG (a′[B])

(1−λ)







a′
[B]










1

,

we have,

λ[ψG (a
′
[B])+αψG (a

′
[B]
) ]+(1−λ)[








a′[B]










1
+γ







a′
[B]










1
]≤ λψG (a′)+(1−λ)





a′






1 , (4.37)

where we have used the fact that




a′






1 =







a′[B]










1
+







a′
[B]










1
and ψG (a′) = ψG (a′[B]) +

ψG (a′[B]). To obtain a signal independent relationship between γ and α, we boundψG (a′[B])

in terms of







a′
[B]










1
,








a′
[B]










1
=
∑

i








a′
[Ri]










1
≤
∑

i

p
g







a′
[Bi]










2
=
p

gψg(a
′
[B]
),

resulting in the condition

γ≤ 1+
λ(1−α)
(1−λ)pg

≤ 1+
λ(1−α)ψG (a′[B])

(1−λ)







a′
[B]










1

,

which completes the proof.

We conclude that we can guarantee recovery for every choice of λ as long as (4.27)–

(4.29) are satisfied. Note that when λ = 0 (Lasso mode) we get γ ≤ 1, and, as expected,
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(4.28)–(4.29) reduce to the Lasso recovery condition. Also, if α = 1 we have γ ≤ 1,

meaning that we must tighten the constrains related to the `2 part of the cost function in

order to relax the `1 part. For γ > 1, the HiLasso conditions are a relaxation of the Lasso

conditions, thus allowing for more signals to be correctly recovered.

Theorem 2 below provides signal independent replacements of the conditions (4.27)–

(4.29). The signal independent bound for (4.27) derived here, depends on coherence mea-

sures between the dictionary D and its image under the projection I−P, C= (I−P)D. Since

P depends on S0, C itself is signal dependent. Thus, we need to maximize also over all

possible sets S0. These are defined as follows,

νP :=max

(

max

(

max

(

dᵀi c j

(dᵀi ci)1/2(d
ᵀ
j c j)1/2

, i, j ∈ G, i 6= j

)

, G ∈ G

)

, S0

)

, (4.38)

µs
P :=max

�

max
�

1

g
ρs(Dᵀ[G]C[F]), G, F ∈ G , G 6= F

�

, S0

�

, (4.39)

µss
P :=max

�

max
�

1

g
ρss(Dᵀ[G]C[F]), G, F ∈ G , G 6= F

�

, S0

�

, (4.40)

ζ :=max
¦

max{(dᵀi ci)
−1/2 : i = 1, . . . , p}, S0

©

. (4.41)

We are now in position to state the theorem.

Theorem 2. Let χ, νP , µs
P , µss

P and ζ be the coherence measures defined respectively in

(4.16) and (4.38)–(4.41). Then the conditions (4.27)–(4.29) are satisfied if

ζ2kgµs
P

1− (s− 1)νP + gµss
P (k− 1)ζ2 ≤ α, (4.42)

ksχ

1− (s− 1)ν − (k− 1)sχ
< γ, (4.43)

ksν

1− (s− 1)ν − (k− 1)sχ
< 1. (4.44)

We also require the denominators in (4.42)–(4.44) to be positive. Note that, although the
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interpretation of (4.42) is rather counter-intuitive, it is easy to check that µs
P ,µss

P ≤ µB. This

can be seen when s = g (a case included in our theorems), in which case P = 0, C = D,

and µs
P = µ

ss
P = µB. Therefore, the condition (4.42) is a relaxation of the standard (dense)

block-sparse recovery one [27, Theorem 2].

Proof: Recall that QD[G0]
=
�

Dᵀ[S0]
C[S0]

�−1
Dᵀ[S0]

C[G0]
. Since ρ[·,·](·) is submultiplicative,

[27],6

ρ[S0,G 0]
(QD[G0]

) ≤ ρ[S0,S0]((D
ᵀ
[S0]

C[S0])
−1)ρ[S0,G 0]

(Dᵀ[S0]
C[G0]

). (4.45)

Applying the definitions of ρ[S0,G 0]
and µs

P we have,

ρ[S0,G 0]
(Dᵀ[S0]

C[G0]
) = max

F∈G 0

∑

E∈S0

ρ(Dᵀ[E]C[F])≤ k max
F∈G 0

max
E∈S0

{ρ(Dᵀ[E]C[F])} ≤ kgµs
P , (4.46)

where the last inequality in (4.46) derives from (4.39) and the fact that each E ∈ S0 belongs

to some Gi , and |E|= s, thus playing the role of the set T in the definition of ρs(·). Our goal

is now to obtain a bound for ρ[S0,S0]((D
ᵀ
[S0]

C[S0])
−1). To this end, we define Z= Dᵀ[S0]

C[S0],

and rewrite it as Z = Λ−1(I − (I − ΛZΛ))Λ−1. Here Λ is a ks×ks block-diagonal scaling

matrix to be defined later. Assume for now that ρ[S0,S0](I− ΛZΛ) < 1. This allows us to

apply the following result from [27]:

Lemma 2. Suppose that ρ[E ,F ](W)< 1. Then (I+W)−1 =
∑∞

k=0(−W)k.

By applying Lemma 2 to W = −I+ ΛZΛ we can write Z−1 = Λ
�
∑∞

i=0(I−ΛZΛ)i
�

Λ.

6There is a slight abuse of notation here, in that, in our case of non-square blocks, each norm ρ[·,·](·) in the
right hand of the submultiplicativity inequality (4.45) is actually a different norm. However, it is easy to see
that the referred inequality holds in this case as well.
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With this,

ρ[S0,S0](Z
−1)

(a)
≤
�

ρ[S0,S0](Λ)
�2
ρ[S0,S0]

 

∞
∑

i=0

(I−ΛZΛ)i
!

(b)
≤
�

ρ[S0,S0](Λ)
�2

∞
∑

i=0

ρ[S0,S0]

�

(I−ΛZΛ)i
�

(c)
≤
�

ρ[S0,S0](Λ)
�2

∞
∑

i=0

�

ρ[S0,S0](I−ΛZΛ)
�i (d)
≤

[ρ[S0,S0](Λ)]
2

1−ρ[S0,S0](I−ΛZΛ)
,

(4.47)

where in (a) and (c) we applied the submultiplicativity of ρ[·,·](·), (b) is a consequence

if the triangle inequality, and (d) is the limit of the geometric series, which is finite when

ρ[S0,S0](I−ΛZΛ)< 1.

We now bound ρ[S0,S0](I− ΛZΛ). First, note that, since Λ is block-diagonal, we have

that (I − ΛZΛ)[Si ,S j] = I[Si ,S j] − Λ[Si ,Si]Z[Si ,S j]Λ[S j ,S j]. We then choose Λ to be a diagonal

matrix with Λii = (d
ᵀ
i ci)−1/2, i ∈ S0. With this choice, we have that the diagonal elements

of I[S j ,S j] − Λ[S j ,S j]Z[S j ,S j]Λ[S j ,S j] are equal to 1 for all j, and the off-diagonal elements are

bounded by νP . Using Geršgorin Theorem we then have that

ρ(I[S j ,S j]−Λ[S j ,S j]Z[S j ,S j]Λ[S j ,S j])≤ (s− 1)νP , j = 1, . . . , k. (4.48)

As for the off-diagonal s×s blocks of I−ΛZΛ, we have (I−ΛZΛ)[Si ,S j] =−Λ[Si ,Si]Z[Si ,S j]Λ[S j ,S j].

We then have

ρ((I−ΛZΛ)[Si ,S j])
(a)
≤ ρ(Λ[Si ,Si])ρ(Z[Si ,S j])ρ(Λ[S j ,S j])

(b)
≤ ζ(gµss

P )ζ, (4.49)

where in (a) we used the submultiplicativity of ρ(·), and (b) derives from the definition of

µss
P , and the fact that, with our choice of Λ we have ρ(Λ[Si ,Si]) ≤ ζ for all i. Now we can
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write the definition of ρ[S0,S0](I−ΛZΛ) and bound its summation using (4.48)–(4.49),

ρ[S0,S0](I−ΛZΛ)≤ max
S j : j≤k

n

ρ(I[S j ,S j]−Λ[S j ,S j]Z[S j ,S j]Λ[S j ,S j]) + . . .

. . .
∑

Si :i≤k,i 6= j

ρ
�

Λ[Si ,Si](I−ΛZΛ)[Si ,S j]Λ[S j ,S j]

�







≤ (s− 1)νP + gµss
P ζ

2.

(4.50)

By our choice of Λ, ρ(Λ[Si ,Si]) ≤ ζ and ρ(Λ[Si ,S j]) = 0 for i 6= j. Therefore ρ[S0,S0](Λ) ≤ ζ

as well. Using this together with (4.50) in (4.47), we obtain

ρ[S0,S0](Z
−1)≤

ζ2

1− (s− 1)νP + gµss
P (k− 1)ζ2 . (4.51)

To ensure that ρ[S0,S0](I− ΛZΛ) < 1, we need the denominator in the above equation to

be positive. Now (4.42) follows by plugging (4.46) and (4.51) into (4.45),

ρ[S0,G 0]
(QD[G0]

)≤
ζ2kgµs

P

1− (s− 1)νP + gµss
P (k− 1)ζ2 .

Finally, we use the same ideas to bound ‖HD[G0]
‖1,1 and derive (4.43). Specifically,

‖HD[G0]
‖1,1 ≤ ‖(D

ᵀ
[S0]

D[S0])
−1‖1,1‖D

ᵀ
[S0]

D[G0]
‖1,1. (4.52)

Now

‖(D[S0])
ᵀD[G0]

‖1,1 =max
j∈G0

∑

i∈S0

|dᵀi d j|
(a)
≤ ksχ, (4.53)

where (a) follows from the definition of χ and the fact that |S0|= ks. It remains to develop
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a bound on ‖(Dᵀ[S0]
D[S0])

−1‖1,1. To this end we express Dᵀ[S0]
D[S0] = I+W, and bound

‖W‖1,1 =max
r≤k







max
i∈Sr







∑

j∈Sr , j 6=i

|dᵀi d j|+
∑

j∈S0\Sr

|dᵀi d j|













≤ (s− 1)ν + s(k− 1)χ. (4.54)

since for all Sr , r ≤ k, and all i ∈ Sr , the first sum has (s−1) nonzero elements bounded by

ν , and the second sum has s(k− 1) elements bounded by χ. Now, by requiring (s− 1)ν +

s(k− 1)χ < 1 we can apply Lemma 2 to W and follow the same path as the one that leads

to (4.50), now using the matrix norm properties of ‖·‖1,1, to obtain,

‖(Dᵀ[S0]
D[S0])

−1‖1,1 ≤
1

1− (s− 1)ν + s(k− 1)χ
. (4.55)

Again, (s− 1)ν + s(k− 1)χ < 1 is implicit in the requirement that the above denominator

be positive. Plugging (4.55) and (4.53) into (4.52) yields (4.43).

The proof for (4.44) is analogous to that of (4.43), only that now the upper bound on

|dᵀi d j|, i ∈ S0, j ∈ T0, is ν ≤ µ. Continuing as before leads to (4.44).

Theorems 1 and 2 are for the non-collaborative case. For the collaborative case there

exist results that show that both the C-Lasso [9] and C-GLasso [26] will recover the true

shared active set with a probability of error that vanishes exponentially with n. Since the

in-group active sets are not necessarily equal for all samples in X, C-HiLasso could only

help in recovering the group sparsity pattern. Since the C-GLasso is a special case of C-

HiLasso when λ1 = 0, we can conjecture that when λ1 > 0, the accuracy of the C-HiLasso

in recovering the correct groups will improve with larger n. Furthermore, since our results

for HiLasso improve on those of the Group Lasso, it is to be expected that the accuracy of

C-HiLasso, for an appropriate λ1 > 0, will be better than that of C-GLasso.

As an intuitive explanation to why this may happen, the proofs in [9] and [26] assume
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a continuous probability distribution on the non-zero coefficients of the signals, and give

recovery results for the average case. On the other hand, the in-group sparsity assumption

of C-HiLasso implies that only s out of g samples will be nonzero within each group. This

implies that, for the same group sparsity pattern, there will be much less (exactly a frac-

tion s/g) non-zero elements in the possible signals compared to the ones that can occur

under the hypothesis of C-GLasso. Since any assumed distribution of the signals under the

in-group sparsity hypothesis has to be concentrated on this much smaller set of possible

signals, they should be easier to recover correctly from solutions to the C-HiLasso program,

compared to the dense group case of C-GLasso.

5 Experimental results

In this section we show the strength of the proposed HiLasso and C-HiLasso models. We

start by comparing our model with the standard Lasso and Group Lasso using synthetic

data. We created q dictionaries, Dr , r = 1, . . . , q, with g = 64 atoms of dimension m = 64,

and i.i.d. Gaussian entries. The columns were normalized to have unit `2 norm. We then

randomly chose k = 2 groups to be active at each time (on all the signals). Sets of n= 200

normalized testing signals were generated, one per active group, as linear combinations

of s � 64 elements of the active dictionaries, xr
j = Dra

r
j . The mixtures were created by

summing these signals and (eventually) adding Gaussian noise of standard deviation σ.

The generated testing signals have a hierarchical sparsity structure and while they share

groups, they do not necessarily share the sparsity pattern inside the groups. We then built

a single dictionary by concatenating the sub-dictionaries, D = [D1, . . . ,Dq], and used it

to solve the Lasso, Group Lasso, HiLasso and C-HiLasso problems. Table B.1 summarizes

the Mean Squared Error (MSE) and Hamming distance of the recovered coefficient vectors

a j , j = 1, . . . , n. We observe that our model is able to exploit the hierarchical structure of
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σ = 0.1 417 / 22.0 1173 / 361.6
330 / 19.8 163 / 13.3

σ = 0.2 564 / 21.6 1182 / 378.3
399 / 22.7 249 / 17.1

σ = 0.4 965 / 22.7 1378 / 340.3
656 / 19.5 595 / 27.4

s = 8 388 / 22.0 1184 / 318.2
272 / 19.5 96 / 16.2

s = 12 1200 / 36.2 1166 / 350.4
704 / 26.5 413 / 29.1

s = 16 1641 / 43.9 1093 / 338.6
1100 / 32.2 551 / 35.0

q = 4 1080 / 27.8 1916 / 221.7
1009 / 29.8 742 / 30.2

q = 8 1200 / 36.2 1166 / 350.4
704 / 26.5 413 / 29.1

q = 12 1030 / 41.8 840 / 447.7
662 / 26.4 4 / 29.8

Table B.1: Simulated signal results. In every table, each 2×2 cell contains the MSE (×104) and
Hamming distance (MSE/Hamming) for Lasso (top,left), GLasso (top,right), HiLasso (bottom,left)
and C-HiLasso (bottom,right). In the first case (left) we vary the noise σ while keeping q = 8 and
s = 8 fixed. In the second and third cases we have σ = 0. For the second experiment (center) we
fixed q = 8 while changing s. In the third case we fix s = 12 and vary the number of groups q. Bold
blue indicates the best results, always obtained for the proposed models. In all cases, the number of
active groups is k = 2.

the data as well as the collaborative structure. Group Lasso selects in general the correct

blocks but it does not give a sparse solution within them. On the other hand, Lasso gives a

solution that has nonzero elements belonging to groups that were not active in the original

signal, leading to a wrong model/class selection. HiLasso gives a sparse solution that picks

atoms from the correct groups but still presents some minor mistakes. For the collaborative

case, in all the tested configurations, no coefficients were selected outside the correct active

groups, and the recovered coefficients are consistently the best ones.

In all the examples, and for each method, the regularization parameters were the ones

for which the best results were obtained. One can scale the parameter λ2 to account for

different number of signals. This situation is analogous to a change in the size of the

dictionary, thus, λ2 should be proportional to the square root of the number of signals to

code.

We then experimented with the USPS digits dataset, which has been shown to be well
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experiment Lasso GLasso HiLasso C-GLasso C-HiLasso

AMSE Hamm AMSE Hamm AMSE Hamm AMSE Hamm AMSE Hamm
1 digit 0.06 0.43 0.07 0.78 0.02 0.19 0.01 0.02 0.02 0.06

1 digit+n 0.08 1.31 0.08 0.87 0.04 0.48 0.05 0.25 0.02 0.01
2 digit 0.09 1.46 0.08 1.86 0.02 1.18 0.01 0.74 0.02 0.90

2 digit+n 0.11 2.21 0.08 1.99 0.04 1.46 0.09 1.60 0.03 0.70

Table B.2: Noisy digit mixtures results. Four different cases are shown: when each signal is a
single digit and when it is the mixture of two different (randomly selected) digits, with and without
additive Gaussian noise with standard deviation 10% of the peak value. For the 2 digits case, results
are the average of 8 runs (in each round a new pair of digits was randomly selected). In the single
digit case, the result is the average of the ten possible situations. Both AMSE and Hamming distance
are shown, with bold blue indicating best. Without noise, both C-GLasso and C-HiLasso yield very
good results. However, in the noisy case, C-HiLasso is clearly superior, showing the advantage of
adding regularization inside the groups from a robustness perspective. See also Figure B.4.

represented in the sparse modeling framework [36]. Here the signals are vectors containing

the unwrapped gray intensities of 16 × 16 images (m = 256). We obtained each of the

n = 200 samples in the testing data set as the mixture of two randomly chosen digits,

one from each of the two drawn sets of digits. In this case we only have ground truth

at the group level. We measure the recovery performance in terms of the average MSE

of the recovered signals, AMSE = 1
nq

∑q
r=1

∑n
j=1








xr
j − x̂r

j










2

2
, where xr

j is the component

corresponding to source r in the signal j, and x̂r
j is the recovered one.

Using the usual training-testing split for USPS, we first learned a dictionary for each

digit. We then created a single dictionary by concatenating them. In Table B.2 we show

the AMSE obtained while summing k = 2 different digits. We also consider the situation

were only one digit is present. C-HiLasso automatically detects the number of sources while

achieving the best recovery performance. As in the synthetic case, only the collaborative

method was able to successfully detect the true active classes. In Figure B.4 we relax the

assumption that all the signals have to contain exactly the same type and amount of classes

in the mixture, further demonstrating the flexibility of the proposed C-HiLasso model.
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Figure B.4: In this example we used C-HiLasso to analyze mixtures where the data set contains
different number and types of sources/classes. We used a set containing 180 mixtures of digit
images. The first 150 images are obtained as the sum/mixture of a number “3” and an number “5”
(randomly selected). Each of the last 30 images in the set are the mixture of three numbers: “3” ,“5”
and “7” (the 180 images are of course presented at random, the algorithm is not a priori aware which
images contain 2 sources and which contain 3). The figure shows the active sets of the recovered
coefficients matrix A as a binary matrix the same size as A (atom indices in the vertical and sample
indices in the horizontal), where black dots indicate nonzero coefficients. C-HiLasso managed to
identify the active blocks while the sub-dictionary corresponding to “7” is mostly active for the last
30 images. The accuracy of this result depends on the relationship between the sub-dictionaries
corresponding to each digit.



106

We also used the digits dataset to experiment with missing data. We randomly dis-

carded an average of 60% of the pixels per mixed image and then applied C-Hilasso. The

algorithm is capable of correctly detecting which digits are present in the images. Some

example results for this case are shown in Figure B.5. Note that this is a quite different

problem than the one commonly addressed in the matrix completion literature. Here we

do not aim to recover signals that all belong to a unique unknown subspace, but signals

that are the combination of two non-unique spaces to be automatically identified from the

available dictionary. Such unknown spaces have common models/groups for all the signals

in question (the coarse level of the hierarchy), but not necessarily the exact same atoms

inside the groups and therefore do not necessarily belong to the same subspaces. Both lev-

els of the hierarchy are automatically detected, e.g., the groups corresponding to “3” and

“5,” and the corresponding reconstructing atoms (subspaces) in each group, these last ones

possibly different for each signal in the set. While we consider that the possible subspaces

are to be selected from the provided dictionary (learned off-line from training data), in

Section 6 we discuss learning such dictionaries as part of the optimization as well (see also

[37, 38]). In such cases, the standard matrix completion problem becomes a particular case

of the C-HiLasso framework (with a single group and all the signals having the same active

set, subspace, in the group), naturally opening numerous theoretical questions for this new

more general model.7

We also compared the performance of C-HiLasso, Lasso, GLasso and C-GLasso (without

hierarchy) in the task of separating mixed textures in an image. In this case, the set of

signals X corresponds to all 12×12 patches in the (single) image to be analyzed. We chose

8 textures from the Brodatz dataset and trained one dictionary for each one of them using

one half of the respective images (these form the g = 8 groups of the dictionary). Then we

7Prof. Carin and collaborators have new results on the case of a single group and signals in possible different
subspaces of the group, an intermediate model between standard matrix completion and C-HiLasso (personal
communication).
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Figure B.5: Example of recovered digits (3 and 5) from a mixture with 60% of missing compo-
nents. From left to right: noiseless mixture, observed mixture with missing pixels highlighted in
red, recovered digits 3 and 5, and active set recovered for all samples using the C-HiLasso and Lasso
respectively. In the last two figures, the active sets are represented as in Figure B.4. The coefficients
blocks for digits 3 and 5 are marked as pink bands. Notice that the C-HiLasso exploits efficiently
the hypothesis of collaborative group-sparsity, succeeding in recovering the correct active groups in
all the samples. The Lasso, which lacks this prior knowledge, is clearly not capable of doing so, and
active sets are spread over all the groups.

created an image as the sum of the other halves of the k = 2 textures. One can think of this

experiment as a generalization to the texture separation problem proposed in [39] (without

additive noise), where only two textures are present. The experiment was repeated for all

possible combinations of two textures from the 8 possible ones. The results are summarized

in Table B.3. A detailed example is shown in Figure B.6. For each algorithm, the best

parameters were chosen using grid search, ensuring that those were not in the edges of

the grid. For Lasso and C-HiLasso the best λ1 is 0.0625. For GLasso and C-GLasso, the

best λ2 was, respectively, 0.05 and 75 (for the collaborative setting, we heuristically scale

λ2 with the number of signals as
p

n. In this experiment, n ≈ 5122, leading to such large

value of λ2). From Table B.3 we can conclude that the C-HiLasso is significantly better

than the competing algorithms, both in the MSE of the recovered signals (we show the

AMSE of recovering both active signals), and in the average Hamming distance between

the recovered group-wise active sets and the true ones. In the latter case we observe that,

in many cases, the C-HiLasso active set recovery performance is perfect (Hamming distance

0) or near perfect, whereas the other methods seldom approach a Hamming distance lower

than 1.
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110 214 18 074 63 78 19 47 85 174 107 447 7 43
117 69 069 18 126 38 47 18 132 51 102 42 27 3

2.80 0.42 107 76 141 129 91 83 191 234 240 219 68 105
1.36 0.00 182 68 209 102 100 78 257 141 245 178 95 19
0.33 0.25 3.65 0.00 52 42 35 62 105 112 162 141 21 93
2.06 0.00 2.67 0.02 158 43 83 29 214 62 200 107 102 10
0.96 0.01 3.69 0.07 1.74 0.00 49 72 123 145 182 148 26 89
1.97 0.00 2.30 0.00 2.42 0.00 81 55 224 98 214 107 85 10
1.02 1.00 3.55 1.00 1.42 1.00 2.25 1.00 85 76 120 87 15 63
2.25 0.09 2.52 0.94 3.39 0.16 2.85 0.35 120 59 107 71 41 9
2.26 0.32 4.12 0.53 3.48 0.44 3.49 0.32 3.16 1.00 229 240 56 95
2.50 0.00 3.23 0.82 3.54 0.20 3.11 0.01 4.07 0.40 245 162 117 27
4.37 1.39 4.47 0.08 4.09 0.13 4.23 0.12 4.20 1.00 4.42 0.42 100 112
2.51 0.02 2.39 0.22 2.42 0.02 2.76 0.02 2.24 0.20 2.96 0.11 102 51
0.09 0.98 3.77 1.00 0.31 1.00 1.83 1.00 1.13 1.00 3.14 0.97 4.30 1.00
0.53 0.00 1.75 0.01 2.04 0.00 1.82 0.00 2.18 0.00 3.04 0.24 1.90 0.18

Table B.3: Texture separation results. The rows and columns indicate the active textures in each
cell. The upper triangle contains the AMSE (×104) results, while the lower triangle shows the
Hamming error in the group-wise active set recovery. Within each cell, results are shown for the
Lasso (top left), Group Lasso (bottom left), Collaborative Group Lasso (top right) and Collaborative
Hierarchical Lasso (bottom right). The best results are in blue bold. Note that, both for the AMSE
and Hamming distance, in 26 out of 28 cases, our model outperforms previous ones.
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Figure B.6: Texture separation results. Left to right: sample mixture, corresponding C-HiLasso
separated textures, and comparison of the active set diagrams obtained by the Lasso (as in Figure
B.5). The one for Lasso is shown on top, where all groups are wrongly active, and the one for
C-HiLasso on bottom, showing that only the two correct groups are selected.

Finally, we use C-HiLasso to automatically identify the sources present in a mixture

of audio signals [40]. The goal is to identify the speakers talking simultaneously on a

single recording. Here the task is not to fully reconstruct each of the unmixed sources

from the observed signal but to identify which speakers are active. In this case, since the

original sources do not need to be recovered, the modeling can be done in terms of features

extracted from the original signals in a linear but non-bijective way.

Audio signals have in general very rich structures and their properties rapidly change

over time. A natural approach is to decompose them into a set of overlapping local time-

windows, where the properties of the signal remain stable. There is a straightforward

analogy with the approach explained above for the texture segmentation case, where im-

ages were decomposed into collections of overlapping patches. These time-windows will

collaborate in the identification.

A challenging aspect when identifying audio sources is to obtain features that are spe-

cific to each source and at the same time invariant to changes in the fundamental frequency

(pitch) of the sources. In the case of speech, a common choice is to use the short-term power

spectrum envelopes as feature vectors [41] (refer to [40] for details on the feature extrac-

tion process and implementation). The spectral envelope in human speech varies along

time, producing different patterns for each phoneme. Thus, a speaker does not produce
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Figure B.7: Speaker identification results. Each column corresponds to the sources identified for a
specific time frame, the true ones marked by yellow dots. The vertical axis indicates the estimated
activity of the different sources, where darker colors indicate higher energy. For each possible
combination of speakers, 10 frames (15 seconds of audio) were evaluated.

an unique spectral envelope, but a set of spectral envelopes that live in a union of mani-

folds. Since such manifolds are well represented by sparse models, the problem of speaker

identification is well suited for the proposed C-HiLasso framework, where each block in the

dictionary is trained for the features corresponding to a given speaker, and the overlapping

time-windows collaborate in detecting the active blocks.

For this experiment we use a dataset consisting of recordings of five different German

radio speakers, two female and three male. Each recording is six minutes long. One quar-

ter of the samples were used for dictionary training, and the rest for testing. For each

speaker, we learned a sub-dictionary from the training dataset. For testing, we extracted 10

non-overlapping frames of 15 seconds each (including silences made by the speakers while

talking), and encoded them using C-HiLasso. The experiment was repeated for all possible

combinations of two speakers, and all the speakers talking alone. The results are presented
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in Figure B.7. C-HiLasso manages to detect automatically the number of sources very accu-

rately, as well as the actual active speakers. Again, refer to [40] for comparisons with other

sparse modeling methods (showing the clear advantage of C-HiLasso) and results obtained

for the identification of wind instruments in musical recordings.

6 Discussion

We introduced a new framework of collaborative hierarchical sparse coding, where multiple

signals collaborate in their encoding, sharing code groups (models) and having (possible

disjoint) sparse representations inside the corresponding groups. An efficient optimization

approach was developed, which guarantees convergence to the global minimum, and exam-

ples illustrating the power of this framework were presented. At the practical level, we are

currently continuing our work on the applications of this proposed framework in a number

of directions, including collaborative instruments separation in music, signal classification,

and speaker recognition, following the here demonstrated capability to collectively select

the correct groups/models.

At the theoretical level, a whole family of new problems is opened by this proposed

framework, some of which we already addressed in this work. A critical one is the overall

capability of selecting the correct groups in the collaborative scenario, with missing infor-

mation, and thereby of performing correct model selection and source identification and

separation. Results in this direction will be reported in the future.

Finally, we have also developed an initial framework for learning the dictionary for

collaborative hierarchical sparse coding, meaning the optimization is simultaneously on

the dictionary and the code. As it is the case with standard dictionary learning, this is

expected to lead to significant performance improvements (see [36] for the particular case

of this with a single group active at a time).
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Universal Regularizers For Robust Sparse Coding and Modeling

Ignacio Ramírez and Guillermo Sapiro

Department of Electrical and Computer Engineering,University of Minnesota

Sparse data models, where data is assumed to be well represented as a
linear combination of a few elements from a dictionary, have gained consider-
able attention in recent years, and their use has led to state-of-the-art results
in many signal and image processing tasks. It is now well understood that the
choice of the sparsity regularization term is critical in the success of such mod-
els. Based on a codelength minimization interpretation of sparse coding, and
using tools from universal coding theory, we propose a framework for designing
sparsity regularization terms which have theoretical and practical advantages
when compared to the more standard `0 or `1 ones. The presentation of the
framework and theoretical foundations is complemented with examples that
show its practical advantages in image denoising, zooming and classification.

1 Introduction

Sparse modeling calls for constructing a succinct representation of some data as a combina-

tion of a few typical patterns (atoms) learned from the data itself. Significant contributions

to the theory and practice of learning such collections of atoms (usually called dictionaries

or codebooks), e.g., [1, 2, 3], and of representing the actual data in terms of them, e.g.,

[4, 5, 6], have been developed in recent years, leading to state-of-the-art results in many

signal and image processing tasks [7, 8, 9, 10]. We refer the reader for example to [11] for
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a recent review on the subject.

A critical component of sparse modeling is the actual sparsity of the representation,

which is controlled by a regularization term (regularizer for short) and its associated pa-

rameters. The choice of the functional form of the regularizer and its parameters is a

challenging task. Several solutions to this problem have been proposed in the literature,

ranging from the automatic tuning of the parameters [12] to Bayesian models, where these

parameters are themselves considered as random variables [13, 12, 14]. In this work we

adopt the interpretation of sparse coding as a codelength minimization problem. This is a

natural and objective method for assessing the quality of a statistical model for describing

given data, and which is based on the Minimum Description Length (MDL) principle [15].

In this framework, the regularization term in the sparse coding formulation is interpreted

as the cost in bits of describing the sparse linear coefficients used to reconstruct the data.

Several works on image coding using this approach were developed in the 1990’s under the

name of “complexity-based” or “compression-based” coding, following the popularization

of MDL as a powerful statistical modeling tool [16, 17, 18]. The focus on these early works

was in denoising using wavelet basis, using either generic asymptotic results from MDL

or fixed probability models, in order to compute the description length of the coefficients.

A later, major breakthrough in MDL theory was the adoption of universal coding tools to

compute optimal codelengths. In this work, we improve and extend on previous results

in this line of work by designing regularization terms based on such universal codes for

image coefficients, meaning that the codelengths obtained when encoding the coefficients

of any (natural) image with such codes will be close to the shortest codelengths that can be

obtained with any model fitted specifically for that particular instance of coefficients. The

resulting framework not only formalizes sparse coding from the MDL and universal coding

perspectives but also leads to a family of universal regularizers which we show to consis-

tently improve results in image processing tasks such as denoising and classification. These
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models also enjoy several desirable theoretical and practical properties such as statistical

consistency (in certain cases), improved robustness to outliers in the data, and improved

sparse signal recovery (e.g., decoding of sparse signals from a compressive sensing point

of view [19]) when compared with the traditional `0 and `1-based techniques in practice.

These models also yield to the use of a simple and efficient optimization technique for

solving the corresponding sparse coding problems as a series of weighted `1 subproblems,

which in turn, can be solved with off-the-shelf algorithms such as LARS [6] or IST [5].

Details are given in the sequel.

Finally, we apply our universal regularizers not only for coding using fixed dictionaries,

but also for learning the dictionaries themselves, leading to further improvements in all the

aforementioned tasks.

The remainder of this paper is organized as follows: in Section 2 we introduce the

standard framework of sparse modeling. Section 3 is dedicated to the derivation of our

proposed universal sparse modeling framework, while Section 4 deals with its implementa-

tion. Section 5 presents experimental results showing the practical benefits of the proposed

framework in image denoising, zooming and classification tasks. Concluding remarks are

given in Section 6.

2 Sparse modeling and the need for better models

Let X ∈ RM×N be a set of N column data samples x j ∈ RM , D ∈ RM×K a dictionary of K col-

umn atoms dk ∈ RM , and A ∈ RK×N ,a j ∈ RK , a set of reconstruction coefficients such that

X= DA. We use aT
k to denote the k-th row of A, the coefficients associated to the k-th atom

in D. For each j = 1, . . . , N we define the active set of a j as A j =
¦

k : ak j 6= 0,1≤ k ≤ K
©

,

and




a j







0 = |A j| as its cardinality. The goal of sparse modeling is to design a dictionary

D such that for all or most data samples x j , there exists a coefficients vector a j such that
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x j ≈ Da j and




a j







0 is small (usually below some threshold L � K). Formally, we would

like to solve the following problem

min
D,A

N
∑

j=1

ψ(a j) s.t.




x j −Da j







2
2 ≤ ε, j = 1, . . . , N , (C.1)

where ψ(·) is a regularization term which induces sparsity in the columns of the solution

A. Usually the constraint




dk







2 ≤ 1, k = 1, . . . , K , is added, since otherwise we can always

decrease the cost function arbitrarily by multiplying D by a large constant and dividing A

by the same constant. When D is fixed, the problem of finding a sparse a j for each sample

x j is called sparse coding,

a j = argmin
a
ψ(a j) s.t.





x j −Da j







2
2 ≤ ε. (C.2)

Among possible choices of ψ(·) are the `0 pseudo-norm, ψ(·) = ‖·‖0, and the `1 norm.

The former tries to solve directly for the sparsest a j , but since it is non-convex, it is com-

monly replaced by the `1 norm, which is its closest convex approximation. Furthermore,

under certain conditions on (fixed) D and the sparsity of a j , the solutions to the `0 and

`1-based sparse coding problems coincide (see for example [19]). The problem (C.1) is

also usually formulated in Lagrangian form,

min
D,A

N
∑

j=1





x j −Da j







2
2+λψ(a j), (C.3)

along with its respective sparse coding problem when D is fixed,

a j = arg min
a





x j −Da






2
2+λψ(a). (C.4)

Even when the regularizer ψ(·) is convex, the sparse modeling problem, in any of its forms,
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is jointly non-convex in (D,A). Therefore, the standard approach to find an approximate

solution is to use alternate minimization: starting with an initial dictionary D(0), we min-

imize (C.3) alternatively in A via (C.2) or (C.4) (sparse coding step), and D (dictionary

update step). The sparse coding step can be solved efficiently when ψ(·) = ‖·‖1 using for

example IST [5] or LARS [6], or with OMP [20] when ψ(·) = ‖·‖0. The dictionary update

step can be done using for example MOD [2] or K-SVD [1].

2.1 Interpretations of the sparse coding problem

We now turn our attention to the sparse coding problem: given a fixed dictionary D, for

each sample vector x j , compute the sparsest vector of coefficients a j that yields a good

approximation of x j . The sparse coding problem admits several interpretations. What

follows is a summary of these interpretations and the insights that they provide into the

properties of the sparse models that are relevant to our derivation.

Model selection in statistics

Using the `0 norm as ψ(·) in (C.4) is known in the statistics community as the Akaike’s

Information Criterion (AIC) when λ = 1, or the Bayes Information Criterion (BIC) when

λ = 1
2

log M , two popular forms of model selection (see [21, Chapter 7]). In this context,

the `1 regularizer was introduced in [22], again as a convex approximation of the above

model selection methods, and is commonly known (either in its constrained or Lagrangian

forms) as the Lasso. Note however that, in the regression interpretation of (C.4), the role

of D and X is very different.
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Maximum a posteriori

Another interpretation of (C.4) is that of a maximum a posteriori (MAP) estimation of a j in

the logarithmic scale, that is

a j = argmax
a
{log P(a|x j)}= arg max

a
{log P(x j|a) + log P(a)}

= argmin
a
{− log P(x j|a)− log P(a)}, (C.5)

where the observed samples x j are assumed to be contaminated with additive, zero mean,

IID Gaussian noise with variance σ2, P(x j|a)∝ e−
1

2σ2 ‖x j−Da‖2
2 , and a prior probability model

on a with the form P(a) ∝ e−θψ(a) is considered. The energy term in Equation (C.4)

follows by plugging the previous two probability models into (C.5) and factorizing 2σ2

into λ= 2σ2θ . According to (C.5), the `1 regularizer corresponds to an IID Laplacian prior

with mean 0 and inverse-scale parameter θ , P(a) =
∏K

k=1 θ e−θ |ak| = θ K e−θ‖a‖1 , which

has a special meaning in signal processing tasks such as image or audio compression. This

is due to the widely accepted fact that representation coefficients derived from predictive

coding of continuous-valued signals, and, more generally, responses from zero-mean filters,

are well modeled using Laplacian distributions. For example, for the special case of DCT

coefficients of image patches, an analytical study of this phenomenon is provided in [23],

along with further references on the subject.

Codelength minimization

Sparse coding, in all its forms, has yet another important interpretation. Suppose that

we have a fixed dictionary D and that we want to use it to compress an image, either

losslessly by encoding the reconstruction coefficients A and the residual X − DA, or in a

lossy manner, by obtaining a good approximation X ≈ DA and encoding only A. Consider

for example the latter case. Most modern compression schemes consist of two parts: a
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probability assignment stage, where the data, in this case A, is assigned a probability P(A),

and an encoding stage, where a code C(A) of length L(A) bits is assigned to the data given

its probability, so that L(A) is as short as possible. The techniques known as Arithmetic

and Huffman coding provide the best possible solution for the encoding step, which is to

approximate the Shannon ideal codelength L(A) = − log P(A) [24, Chapter 5]. Therefore,

modern compression theory deals with finding the coefficients A that maximize P(A), or,

equivalently, that minimize − log P(A). Now, to encode X lossily, we obtain coefficients A

such that each data sample x j is approximated up to a certain `2 distortion ε,




x j −Da j







2
2 ≤

ε. Therefore, given a model P(a) for a vector of reconstruction coefficients, and assuming

that we encode each sample independently, the optimum vector of coefficients a j for each

sample x j will be the solution to the optimization problem

a j = argmin
a
− log P(a) s.t.





x j −Da j







2
2 ≤ ε, (C.6)

which, for the choice P(a) ∝ e−ψ(a) coincides with the error constrained sparse coding

problem (C.2). Suppose now that we want lossless compression. In this case we also need

to encode the reconstruction residual x j −Da j . Since P(x,a) = P(x|a)P(a), the combined

codelength will be

L(x j ,a j) =− log P(x j ,a j) =− log P(x j|a j)− log P(a j). (C.7)

Therefore, obtaining the best coefficients a j amounts to solving mina L(x j ,a j), which is

precisely the MAP formulation of (C.5), which in turn, for proper choices of P(x|a) and

P(a), leads to the Lagrangian form of sparse coding (C.4).1

1Laplacian models, as well as Gaussian models, are probability distributions over R, characterized by con-
tinuous probability density functions, f (a) = F ′(a), F(a) = P(x ≤ a). If the reconstruction coefficients are
considered real numbers, under any of these distributions, any instance of A ∈ RK×N will have measure 0, that
is, P(A) = 0. In order to use such distributions as our models for the data, we assume that the coefficients
in A are quantized to a precision ∆, small enough for the density function f (a) to be approximately constant
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As one can see, the codelength interpretation of sparse coding is able to unify and

interpret both the constrained and unconstrained formulations into one consistent frame-

work. Furthermore, this framework offers a natural and objective measure for comparing

the quality of different models P(x|a) and P(a) in terms of the codelengths obtained.

Remarks on related work

As mentioned in the introduction, the codelength interpretation of signal coding was al-

ready studied in the context of orthogonal wavelet-based denoising. An early example of

this line of work considers a regularization term which uses the Shannon Entropy function
∑

pi log pi to give a measure of the sparsity of the solution [16]. However, the Entropy

function is not used as measure of the ideal codelength for describing the coefficients, but

as a measure of the sparsity (actually, group sparsity) of the solution. The MDL principle

was applied to the signal estimation problem in [18]. In this case, the codelength term

includes the description of both the location and the magnitude of the nonzero coefficients.

Although a pioneering effort, the model assumed in [18] for the coefficient magnitude is

a uniform distribution on [0, 1], which does not exploit a priori knowledge of image co-

efficient statistics, and the description of the support is slightly wasteful. Furthermore,

the codelength expression used is an asymptotic result, actually equivalent to BIC (see Sec-

tion 2.1) which can be misleading when working with small sample sizes, such as when

encoding small image patches, as in current state of the art image processing applications.

The uniform distribution was later replaced by the universal code for integers [25] in [17].

However, as in [18], the model is so general that it does not perform well for the specific

case of coefficients arising from image decompositions, leading to poor results. In contrast,

our models are derived following a careful analysis of image coefficient statistics. Finally,

in any interval [a −∆/2, a +∆/2], a ∈ R, so that we can approximate P(a) ≈ ∆ f (a), a ∈ R. Under these
assumptions, − log P(a) ≈ − log f (a)− log∆, and the effect of ∆ on the codelength produced by any model
is the same. Therefore, we will omit ∆ in the sequel, and treat density functions and probability distributions
interchangeably as P(·). Of course, in real compression applications, ∆ needs to be tuned.
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Figure C.1: Standard 8×8 DCT dictionary (a), global empirical distribution of the coefficients in A
(b, log scale), empirical distributions of the coefficients associated to each of the K = 64 DCT atoms
(c, log scale). The distributions in (c) have a similar heavy tailed shape (heavier than Laplacian),
but the variance in each case can be significantly different. (d) Histogram of the K = 64 different
θ̂k values obtained by fitting a Laplacian distribution to each row aT

k of A. Note that there are
significant occurrences between θ̂ = 5 to θ̂ = 25. The coefficients A used in (b-d) were obtained
from encoding 106 8×8 patches (after removing their DC component) randomly sampled from the
Pascal 2006 dataset of natural images [26]. (e) Histograms showing the spatial variability of the
best local estimations of θ̂k for a few rows of A across different regions of an image. In this case, the
coefficients A correspond to the sparse encoding of all 8×8 patches from a single image, in scan-line
order. For each k, each value of θ̂k was computed from a random contiguous block of 250 samples
from aT

k . The procedure was repeated 4000 times to obtain an empirical distribution. The wide
supports of the empirical distributions indicate that the estimated θ̂ can have very different values,
even for the same atom, depending on the region of the data from where the coefficients are taken.

probability models suitable to image coefficient statistics of the form P(a) ∝ e−|a|
β

(known

as generalized Gaussians) were applied to the MDL-based signal coding and estimation

framework in [17]. The justification for such models is based on the empirical observa-

tion that sparse coefficients statistics exhibit “heavy tails” (see next section). However, the

choice is ad hoc and no optimality criterion is available to compare it with other possibil-

ities. Moreover, there is no closed form solution for performing parameter estimation on

such family of models, requiring numerical optimization techniques. In Section 3, we derive

a number of probability models for which parameter estimation can be computed efficiently

in closed form, and which are guaranteed to optimally describe image coefficients.
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2.2 The need for a better model

As explained in the previous subsection, the use of the `1 regularizer implies that all the

coefficients in A share the same Laplacian parameter θ . However, as noted in [23] and

references therein, the empirical variance of coefficients associated to different atoms, that

is, of the different rows aT
k of A, varies greatly with k = 1 . . . , K . This is clearly seen in

Figures C.1(a-c), which show the empirical distribution of DCT coefficients of 8×8 patches.

As the variance of a Laplacian is 2/θ2, different variances indicate different underlying θ .

The histogram of the set
¦

θ̂k, k = 1, . . . , K
©

of estimated Laplacian parameters for each row

k, Figure C.1(d), shows that this is indeed the case, with significant occurrences of values

of θ̂ in a range of 5 to 25.

The straightforward modification suggested by this phenomenon is to use a model

where each row of A has its own weight associated to it, leading to a weighted `1 regu-

larizer. However, from a modeling perspective, this results in K parameters to be adjusted

instead of just one, which often results in poor generalization properties. For example, in

the cases studied in Section 5, even with thousands of images for learning these parameters,

the results of applying the learned model to new images were always significantly worse

(over 1dB in estimation problems) when compared to those obtained using simpler models

such as an unweighted `1. 2 One reason for this failure may be that real images, as well as

other types of signals such as audio samples, are far from stationary. In this case, even if

each atom k is associated to its own θk (λk), the optimal value of θk can have significant

local variations at different positions or times. This effect is shown in Figure C.1(e), where,

for each k, each θk was re-estimated several times using samples from different regions of

an image, and the histogram of the different estimated values of θ̂k was computed. Here

again we used the DCT basis as the dictionary D.

2Note that this is the case when the weights are found by maximum likelihood. Other applications of
weighted `1 regularizers, using other types of weighting strategies, are known to improve over `1-based ones
for certain applications (see e.g. [14]).
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The need for a flexible model which at the same time has a small number of parameters

leads naturally to Bayesian formulations where the different possible λk are “marginalized

out” by imposing an hyper-prior distribution on λ, sampling λ using its posterior distribu-

tion, and then averaging the estimates obtained with the sampled sparse-coding problems.

Examples of this recent line of work, and the closely related Bayesian Compressive Sensing,

are developed for example in [27, 28, 29, 30]. Despite of its promising results, the Bayesian

approach is often criticized due to the potentially expensive sampling process (something

which can be reduced for certain choices of the priors involved [27]), arbitrariness in the

choice of the priors, and lack of proper theoretical justification for the proposed models

[30].

In this work we pursue the same goal of deriving a more flexible and accurate sparse

model than the traditional ones, while avoiding an increase in the number of parameters

and the burden of possibly solving several sampled instances of the sparse coding problem.

For this, we deploy tools from the very successful information-theoretic field of universal

coding, which is an extension of the compression scenario summarized above in Section 2.1,

when the probability model for the data to be described is itself unknown and has to be

described as well.

3 Universal models for sparse coding

Following the discussion in the preceding section, we now have several possible scenarios

to deal with. First, we may still want to consider a single value of θ to work well for all the

coefficients in A, and try to design a sparse coding scheme that does not depend on prior

knowledge on the value of θ . Secondly, we can consider an independent (but not identically

distributed) Laplacian model where the underlying parameter θ can be different for each

atom dk, k = 1, . . . , K . In the most extreme scenario, we can consider each single coefficient
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ak j in A to have its own unknown underlying θk j and yet, we would like to encode each of

these coefficients (almost) as if we knew its hidden parameter.

The first two scenarios are the ones which fit the original purpose of universal coding

theory [31], which is the design of optimal codes for data whose probability models are

unknown, and the models themselves are to be encoded as well in the compressed repre-

sentation.

Now we develop the basic ideas and techniques of universal coding applied to the first

scenario, where the problem is to describe A as an IID Laplacian with unknown parameter

θ . Assuming a known parametric form for the prior, with unknown parameter θ , leads to

the concept of a model class. In our case, we consider the classM = {P(A|θ) : θ ∈Θ} of all

IID Laplacian models over A ∈ RK×N , where

P(A|θ) =
N
∏

j=1

K
∏

k=1

P(ak j|θ), P(ak j|θ) = θ e−θ |ak j |

and Θ⊆ R+. The goal of universal coding is to find a probability model Q(A) which can fit

A as well as the model in M that best fits A after having observed it. A model Q(A) with

this property is called universal (with respect to the modelM ).

For simplicity, in the following discussion we consider the coefficient matrix A to be

arranged as a single long column vector of length n = K×N , a = (a1, . . . , an). We also

use the letter a without sub-index to denote the value of a random variable representing

coefficient values.

First we need to define a criterion for comparing the fitting quality of different models.

In universal coding theory this is done in terms of the codelengths L(a) required by each

model to describe a.

If the model consists of a single probability distribution P(·), we know from Section 2.1
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that the optimum codelength corresponds to LP(a) = − log P(a). Moreover, this relation-

ship defines a one-to-one correspondence between distributions and codelengths, so that

for any coding scheme LQ(a), Q(a) = 2−LQ(a). Now suppose that we are restricted to a

class of models M , and that we need choose the model P̂ ∈ M that assigns the shortest

codelength to a particular instance of a. We then have that P̂ is the model in M that as-

signs the maximum probability to a. For a classM parametrized by θ , this corresponds to

P̂ = P(a|θ̂(a)), where θ̂(a) is the maximum likelihood estimator (MLE) of the model class

parameter θ given a (we will usually omit the argument and just write θ̂). Unfortunately,

we also need to include the value of θ̂ in the description of a for the decoder to be able

to reconstruct it from the code C(a). Thus, we have that any model Q(a) inducing valid

codelengths LQ(a) will have LQ(a) > − log P(a|θ̂). The overhead of LQ(a) with respect to

− log P(a|θ̂) is known as the codelength regret,

R(a,Q) := LQ(a)− (− log P(a|θ̂(a))) =− logQ(a) + log P(a|θ̂(a))).

A model Q(a) (or, more precisely, a sequence of models, one for each data length n) is

called universal if R(a,Q) grows sublinearly in n for all possible realizations of a, that is

1
n
R(a,Q) → 0 , ∀a ∈ Rn, so that the codelength regret with respect to the MLE becomes

asymptotically negligible.

There are a number of ways to construct universal probability models. The simplest

one is the so called two-part code, where the data is described in two parts. The first part

describes the optimal parameter θ̂(a) and the second part describes the data according

to the model with the value of the estimated parameter θ̂ , P(a|θ̂(a)). For uncountable

parameter spaces Θ, such as a compact subset of R, the value of θ̂ has to be quantized in

order to be described with a finite number of bits d. We call the quantized parameter θ̂d .
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The regret for this model is thus

R(a,Q) = L(θ̂d) + L(a|θ̂d)− L(a|θ̂) = L(θ̂d)− log P(a|θ̂d)− (− log P(a|θ̂)).

The key for this model to be universal is in the choice of the quantization step for the param-

eter θ̂ , so that both its description L(θ̂d), and the difference − log P(a|θ̂d)− (− log P(a|θ̂)),

grow sublinearly. This can be achieved by letting the quantization step shrink as O(1/
p

n)

[15], thus requiring d = O(0.5 log n) bits to describe each dimension of θ̂d . This gives us a

total regret for two-part codes which grows as dim(Θ)
2

log n, where dim(Θ) is the dimension

of the parameter space Θ.

Another important universal code is the so called Normalized Maximum Likelihood (NML)

[32]. In this case the universal model Q∗(a) corresponds to the model that minimizes the

worst case regret,

Q∗(a) =min
Q

max
a
{− logQ(a) + log P(a|θ̂(a))},

which can be written in closed form as Q∗(a) = P(a|θ̂(a))
C (M ,n) , where the normalization constant

C (M , n) :=
∑

a∈Rn P(a|θ̂(a))da is the value of the minimax regret and depends only on

M and the length of the data n.3 Note that the NML model requires C (M , n) to be finite,

something which is often not the case.

The two previous examples are good for assigning a probability to coefficients a that

have already been computed, but they cannot be used as a model for computing the coeffi-

cients themselves since they depend on having observed them in the first place. For this and

other reasons that will become clearer later, we concentrate our work on a third important

3The minimax optimality of Q∗(a) derives from the fact that it defines a complete uniquely decodable code
for all data a of length n, that is, it satisfies the Kraft inequality with equality.

∑

a∈Rn 2−LQ∗ (a) = 1. Since every
uniquely decodable code with lengths

¦

LQ(a) : a ∈ Rn
©

must satisfy the Kraft inequality (see [24, Chapter 5]),
if there exists a value of a such that LQ(a) < LQ∗(a) (that is 2−LQ(a) > 2−LQ∗ (a)), then there exists a vector a′ for
which LQ(a′) > LQ∗(a′) for the Kraft inequality to hold. Therefore the regret of Q for a′ is necessarily greater
than C (M , n), which shows that Q∗ is minimax optimal.
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family of universal codes derived from the so called mixture models (also called Bayesian

mixtures). In a mixture model, Q(a) is a convex mixture of all the models P(a|θ) in M ,

indexed by the model parameter θ , Q(a) =
∫

Θ
P(a|θ)w(θ)dθ , where w(θ) specifies the

weight of each model. Being a convex mixture implies that w(θ) ≥ 0 and
∫

Θ
w(θ)dθ = 1,

thus w(θ) is itself a probability measure over Θ. We will restrict ourselves to the particular

case when a is considered a sequence of independent random variables,4

Q(a) =
n
∏

j=1

Q j(a j), Q j(a j) =

∫

Θ
P(a j|θ)w j(θ)dθ , (C.8)

where the mixing function w j(θ) can be different for each sample j. An important

particular case of this scheme is the so called Sequential Bayes code, in which w j(θ) is

computed sequentially as a posterior distribution based on previously observed samples,

that is w j(θ) = P(θ |a1, a2, . . . , an−1) [33, Chapter 6]. In this work, for simplicity, we restrict

ourselves to the case where w j(θ) = w(θ) is the same for all j. The result is an IID model

where the probability of each sample a j is a mixture of some probability measure over R,

Q j(a j) =Q(a j) =

∫

Θ
P(a j|θ)w(θ)dθ , ∀ j = 1, . . . , N . (C.9)

A well known result for IID mixture (Bayesian) codes states that their asymptotic regret

is O(dim(Θ)
2

log n), thus stating their universality, as long as the weighting function w(θ)

is positive, continuous and unimodal over Θ (see for example [33, Theorem 8.1],[34]).

This gives us great flexibility on the choice of a weighting function w(θ) that guarantees

universality. Of course, the results are asymptotic and the o(log n) terms can be large, so

that the choice of w(θ) can have practical impact for small sample sizes.

In the following discussion we derive several IID mixture models for the Laplacian model

4More sophisticated models which include dependencies between the elements of a are out of the scope of
this work.
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class M . For this purpose, it will be convenient to consider the corresponding one-sided

counterpart of the Laplacian, which is the exponential distribution over the absolute value

of the coefficients, |a|, and then symmetrize back to obtain the final distribution over the

signed coefficients a.

3.1 The conjugate prior

In general, (C.9) can be computed in closed form if w(θ) is the conjugate prior of P(a|θ).

When P(a|θ) is an exponential (one-sided Laplacian), the conjugate prior is the Gamma

distribution,

w(θ |κ,β) = Γ(κ)−1θκ−1βκe−βθ , θ ∈ R+,

where κ and β are its shape and scale parameters respectively. Plugging this in (C.9) we

obtain the Mixture of exponentials model (MOE), which has the following form (see Appendix

7 for the full derivation),

QMOE(a|β ,κ) = κβκ(a+ β)−(κ+1), a ∈ R+. (C.10)

With some abuse of notation, we will also denote the symmetric distribution on a as MOE,

QMOE(a|β ,κ) =
1

2
κβκ(|a|+ β)−(κ+1), a ∈ R. (C.11)

Although the resulting prior has two parameters to deal with instead of one, we know

from universal coding theory that, in principle, any choice of κ and β will give us a model

whose codelength regret is asymptotically small.

Furthermore, being IID models, each coefficient of a itself is modeled as a mixture of

exponentials, which makes the resulting model over a very well suited to the most flexi-

ble scenario where the “underlying” θ can be different for each a j . In Section 5.2 we will
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show that a single MOE distribution can fit each of the K rows of A better than K separate

Laplacian distributions fine-tuned to these rows, with a total of K parameters to be esti-

mated. Thus, not only we can deal with one single unknown θ , but we can actually achieve

maximum flexibility with only two parameters (κ and β). This property is particular of the

mixture models, and does not apply to the other universal models presented.

Finally, if desired, both κ and β can be easily estimated using the method of moments

(see Appendix 7). Given sample estimates of the first and second non-central moments,

µ̂1 =
1
n

∑n
j=1 |a j| and µ̂2 =

1
n

∑n
j=1 |a j|2, we have that

κ̂= 2(µ̂2− µ̂2
1)/(µ̂2− 2µ̂2

1) and β̂ = (κ̂− 1)µ̂1. (C.12)

When the MOE prior is plugged into (C.5) instead of the standard Laplacian, the following

new sparse coding formulation is obtained,

a j = arg min
a





x j −Da






2
2+λMOE

K
∑

k=1

log
��

�ak

�

�+ β
�

, (C.13)

where λMOE = 2σ2(κ+1). An example of the MOE regularizer, and the thresholding function

it induces, is shown in Figure C.2 (center column) for κ = 2.5,β = 0.05. Smooth, differ-

entiable non-convex regularizers such as the one in in (C.13) have become a mainstream

robust alternative to the `1 norm in statistics [35, 14]. Furthermore, it has been shown

that the use of such regularizers in regression leads to consistent estimators which are able

to identify the relevant variables in a regression model (oracle property) [35]. This is not

always the case for the `1 regularizer, as was proved in [14]. The MOE regularizer has also

been recently proposed in the context of compressive sensing [36], where it is conjectured

to be better than the `1-term at recovering sparse signals in compressive sensing applica-

tions.5 This conjecture was partially confirmed recently for non-convex regularizers of the

5In [36], the logarithmic regularizer arises from approximating the `0 pseudo-norm as an `1-normalized
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form ψ(a) = ‖a‖r with 0< r < 1 in [37, 38], and for a more general family of non-convex

regularizers including the one in (C.13) in [39]. In all cases, it was shown that the condi-

tions on the sensing matrix (here D) can be significantly relaxed to guarantee exact recovery

if non-convex regularizers are used instead of the `1 norm, provided that the exact solution

to the non-convex optimization problem can be computed. In practice, this regularizer is

being used with success in a number of applications here and in [40, 41].6 Our experimen-

tal results in Section 5 provide further evidence on the benefits of the use of non-convex

regularizers, leading to a much improved recovery accuracy of sparse coefficients compared

to `1 and `0. We also show in Section 5 that the MOE prior is much more accurate than the

standard Laplacian to model the distribution of reconstruction coefficients drawn from a

large database of image patches. We also show in Section 5 how these improvements lead

to better results in applications such as image estimation and classification.

3.2 The Jeffreys prior

The Jeffreys prior for a parametric model classM = {P(a|θ), θ ∈Θ}, is defined as

w(θ) =

p

|I(θ)|
∫

Θ

p

|I(ξ)|dξ
, θ ∈Θ, (C.14)

where |I(θ)| is the determinant of the Fisher information matrix

I(θ) =

¨

EP(a|θ̃)

�

−
∂ 2

∂ θ̃2
log P(a|θ̃)

�«

�

�

�

�

�

θ̃=θ

. (C.15)

The Jeffreys prior is well known in Bayesian theory due to three important properties:

it virtually eliminates the hyper-parameters of the model, it is invariant to the original

element-wise sum, without the insight and theoretical foundation here reported.
6While these works support the use of such non-convex regularizers, none of them formally derives them

using the universal coding framework as in this paper.
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parametrization of the distribution, and it is a “non-informative prior,” meaning that it

represents well the lack of prior information on the unknown parameter θ [42]. It turns

out that, for quite different reasons, the Jeffreys prior is also of paramount importance in

the theory of universal coding. For instance, it has been shown in [43] that the worst case

regret of the mixture code obtained using the Jeffreys prior approaches that of the NML

as the number of samples n grows. Thus, by using Jeffreys, one can attain the minimum

worst case regret asymptotically, while retaining the advantages of a mixture (not needing

hindsight of a), which in our case means to be able to use it as a model for computing a via

sparse coding.

For the exponential distribution we have that I(θ) = 1
θ2 . Clearly, if we let Θ = (0,∞),

the integral in (C.14) evaluates to ∞. Therefore, in order to obtain a proper integral, we

need to exclude 0 and∞ fromΘ (note that this was not needed for the conjugate prior). We

choose to define Θ= [θ1,θ2], 0< θ1 < θ2 <∞, leading to w(θ) = 1
ln(θ2/θ1)

1
θ

, θ ∈ [θ1,θ2].

The resulting mixture, after being symmetrized around 0, has the following form (see Ap-

pendix 7):

QJOE(a|θ1,θ2) =
1

2 ln(θ2/θ1)
1

|a|
�

e−θ1|a|− e−θ2|a|
�

, a ∈ R+. (C.16)

We refer to this prior as a Jeffreys mixture of exponentials (JOE), and again overload this

acronym to refer to the symmetric case as well. Note that although QJOE is not defined

for a = 0, its limit when a → 0 is finite and evaluates to θ2−θ1

2 ln(θ2/θ1)
. Thus, by defining

QJOE(0) =
θ2−θ1

2 ln(θ2/θ1)
, we obtain a prior that is well defined and continuous for all a ∈ R.

When plugged into (C.5), we get the JOE-based sparse coding formulation,

min
a





x j −Da






2
2+λJOE

K
∑

k=1

{log |ak| − log(e−θ1|ak|− e−θ2|ak|)}, (C.17)

where, according to the convention just defined for QJOE(0), we define ψJOE(0) := log(θ2−
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θ1). According to the MAP interpretation we have that λJOE = 2σ2, coming from the Gaus-

sian assumption on the approximation error as explained in Section 2.1.

As with MOE, the JOE-based regularizer, ψJOE(·) =− logQJOE(·), is continuous and differ-

entiable inR+, and its derivative converges to a finite value at zero, lima→0ψ
′
JOE
(a) =

θ2
2−θ

2
1

θ2−θ1
.

As we will see later in Section 4, these properties are important to guarantee the conver-

gence of sparse coding algorithms using non-convex priors. Note from (C.17) that we can

rewrite the JOE regularizer as

ψJOE(ak) = log |ak| − log e−θ1|a|(1− e−(θ2−θ1)|a|) = θ1|ak|+ log |ak| − log(1− e−(θ2−θ1)|ak|),

so that for sufficiently large |ak|, log(1− e−(θ2−θ1)|ak|) ≈ 0, θ1|ak| � log |ak|, and we have

that ψJOE(|ak|) ≈ θ1|ak|. Thus, for large |ak|, the JOE regularizer behaves like `1 with λ′ =

2σ2θ1. In terms of the probability model, this means that the tails of the JOE mixture behave

like a Laplacian with θ = θ1, with the region where this happens determined by the value

of θ2 − θ1. The fact that the non-convex region of ψJOE(·) is confined to a neighborhood

around 0 could help to avoid falling in bad local minima during the optimization (see

Section 4 for more details on the optimization aspects). Finally, although having Laplacian

tails means that the estimated a will be biased [35], the sharper peak at 0 allows us to

perform a more aggressive thresholding of small values, without excessively clipping large

coefficients, which leads to the typical over-smoothing of signals recovered using an `1

regularizer. See Figure C.2 (rightmost column) for an example regularizer based on JOE

with parameters θ1 = 20,θ2 = 100, and the thresholding function it induces.

The JOE regularizer has two hyper-parameters (θ1,θ2) which define Θ and that, in prin-

ciple, need to be tuned. One possibility is to choose θ1 and θ2 based on the physical

properties of the data to be modeled, so that the possible values of θ never fall outside of

the range [θ1,θ2]. For example, in modeling patches from grayscale images with a limited
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Figure C.2: Left to right: `1 (green), MOE (red) and JOE (blue) regularizers and their corresponding
thresholding functions thres(x) := argmina{(x − a)2+λψ(|a|)}. The unbiasedness of MOE is due to
the fact that large coefficients are not shrank by the thresholding function. Also, although the JOE

regularizer is biased, the shrinkage of large coefficients can be much smaller than the one applied
to small coefficients.

dynamic range of [0, 255] in a DCT basis, the maximum variance of the coefficients can

never exceed 1282. The same is true for the minimum variance, which is defined by the

quantization noise.

Having said this, in practice it is advantageous to adjust [θ1,θ2] to the data at hand.

In this case, although no closed form solutions exist for estimating [θ1,θ2] using MLE or

the method of moments, standard optimization techniques can be easily applied to obtain

them. See Appendix 7 for details.

3.3 The conditional Jeffreys

A recent approach to deal with the case when the integral over Θ in the Jeffreys prior is

improper, is the conditional Jeffreys [33, Chapter 11]. The idea is to construct a proper prior,

based on the improper Jeffreys prior and the first few n0 samples of a, (a1, a2, . . . , an0
), and

then use it for the remaining data. The key observation is that although the normalizing

integral
∫
p

I(θ)dθ in the Jeffreys prior is improper, the unnormalized prior w(θ) =
p

I(θ)

can be used as a measure to weight P(a1, a2, . . . , an0
|θ),

w(θ) =
P(a1, a2, . . . , an0

|θ)
p

I(θ)
∫

Θ
P(a1, a2, . . . , an0

|ξ)
p

I(ξ)dξ
. (C.18)

It turns out that the integral in (C.18) usually becomes proper for small n0 in the order
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of dim(Θ). In our case we have that for any n0 ≥ 1, the resulting prior is a Gamma(κ0,β0)

distribution with κ0 := n0 and β0 :=
∑n0

j=1 a j (see Appendix 7 for details). Therefore, using

the conditional Jeffreys prior in the mixture leads to a particular instance of MOE, which

we denote by CMOE (although the functional form is identical to MOE), where the Gamma

parameters κ and β are automatically selected from the data. This may explain in part why

the Gamma prior performs so well in practice, as we will see in Section 5.

Furthermore, we observe that the value of β obtained with this approach (β0) coincides

with the one estimated using the method of moments for MOE if the κ in MOE is fixed to

κ = κ0 + 1 = n0 + 1. Indeed, if computed from n0 samples, the method of moments for

MOE gives β = (κ− 1)µ1, with µ1 =
1
n0

∑

a j , which gives us β = n0+1−1
n0

∑

a j = β0. It turns

out in practice that the value of κ estimated using the method of moments gives a value

between 2 and 3 for the type of data that we deal with (see Section 5), which is just above

the minimum acceptable value for the CMOE prior to be defined, which is n0 = 1. This

justifies our choice of n0 = 2 when applying CMOE in practice.

As n0 becomes large, so does κ0 = n0, and the Gamma prior w(θ) obtained with this

method converges to a Kronecker delta at the mean value of the Gamma distribution,

δκ0/β0
(·). Consequently, when w(θ) ≈ δκ0/β0

(θ), the mixture
∫

Θ
P(a|θ)w(θ)dθ will be

close to P(a|κ0/β0). Moreover, from the definition of κ0 and β0 we have that κ0/β0 is ex-

actly the MLE of θ for the Laplacian distribution. Thus, for large n0, the conditional Jeffreys

method approaches the MLE Laplacian model.

Although from a universal coding point of view this is not a problem, for large n0 the

conditional Jeffreys model will loose its flexibility to deal with the case when different

coefficients in A have different underlying θ . On the other hand, a small n0 can lead to

a prior w(θ) that is overfitted to the local properties of the first samples, which for non-

stationary data such as image patches, can be problematic. Ultimately, n0 defines a trade-off

between the degree of flexibility and the accuracy of the resulting model.
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4 Optimization and implementation details

All of the mixture models discussed so far yield non-convex regularizers, rendering the

sparse coding problem non-convex in a. It turns out however that these regularizers satisfy

certain conditions which make the resulting sparse coding optimization well suited to be

approximated using a sequence of successive convex sparse coding problems, a technique

known as Local Linear Approximation (LLA) [44] (see also [41, 45] for alternative optimiza-

tion techniques for such non-convex sparse coding problems). In a nutshell, suppose we

need to obtain an approximate solution to

a j = argmin
a





x j −Da






2
2+λ

K
∑

k=1

ψ(|ak|), (C.19)

where ψ(·) is a non-convex function over R+. At each LLA iteration, we compute a(t+1)
j by

doing a first order expansion of ψ(·) around the K elements of the current estimate a(t)k j ,

ψ̃
(t)
k (|a|) =ψ(|a

(t)
k j |) +ψ

′(|a(t)k j |)
�

|a| − |a(t)k j |
�

=ψ′(|a(t)k j |)|a|+ ck,

and solving the convex weighted `1 problem that results after discarding the constant terms

ck,

a(t+1)
j = argmin

a





x j −Da






2
2+λ

K
∑

k=1

ψ̃
(t)
k (|ak|)

= argmin
a





x j −Da






2
2+λ

K
∑

k=1

ψ′(|a(t)k j |)|ak|= arg min
a





x j −Da






2
2+

K
∑

k=1

λ
(t)
k |ak|.(C.20)

where we have defined λ(t)k := λψ′(|a(t)k j |). If ψ′(·) is continuous in (0,+∞), and right-

continuous and finite at 0, then the LLA algorithm converges to a stationary point of (C.19)

[14]. These conditions are met for both the MOE and JOE regularizers. Although, for the JOE
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prior, the derivativeψ′(·) is not defined at 0, it converges to the limit
θ2

2−θ
2
1

2(θ2−θ1)
when |a| → 0,

which is well defined for θ2 6= θ1. If θ2 = θ1, the JOE mixing function is a Kronecker delta

and the prior becomes a Laplacian with parameter θ = θ1 = θ2. Therefore we have that

for all of the mixture models studied, the LLA method converges to a stationary point. In

practice, we have observed that 5 iterations are enough to converge. Thus, the cost of

sparse coding, with the proposed non-convex regularizers, is at most 5 times that of a

single `1 sparse coding, and could be less in practice if warm restarts are used to begin

each iteration.

Of course we need a starting point a(0)j , and, being a non-convex problem, this choice will

influence the approximation that we obtain. One reasonable choice, used in this work, is to

define a(0)k j = a0, k = 1, . . . , K , j = 1, . . . , N , where a0 is a scalar so thatψ′(a0) = Ew[θ], that

is, so that the first sparse coding corresponds to a Laplacian regularizer whose parameter is

the average value of θ as given by the mixing prior w(θ).

Finally, note that although the discussion here has revolved around the Lagrangian

formulation to sparse coding of (C.4), this technique is also applicable to the constrained

formulation of sparse-coding given by Equation (C.1) for a fixed dictionary D.

Expected approximation error: Since we are solving a convex approximation to the

actual target optimization problem, it is of interest to know how good this approximation

is in terms of the original cost function. To give an idea of this, after an approximate

solution a is obtained, we compute the expected value of the difference between the true

and approximate regularization term values. The expectation is taken, naturally, in terms

of the assumed distribution of the coefficients in a. Since the regularizers are separable,

we can compute the error in a separable way as an expectation over each k-th coefficient,

ζq(ak) = Eν∼q

�

ψ̃k(ν)−ψ(ν)
�

, where ψ̃k(·) is the approximation ofψk(·) around the final
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estimate of ak. For the case of q = MOE, the expression obtained is (see Appendix)

ζMOE(ak,κ,β) = Eν∼MOE(κ,β)

�

ψ̃k(ν)−ψ(ν)
�

= log(ak+β)+
1

ak + β

�

ak +
β

κ− 1

�

−logβ−
1

κ
.

In the MOE case, for κ and β fixed, the minimum of ζMOE occurs when ak =
β

κ−1
= µ(β ,κ).

We also have ζMOE(0) = (κ− 1)−1−κ−1.

The function ζq(·) can be evaluated on each coefficient of A to give an idea of its qual-

ity. For example, in the experiments from Section 5, we obtained an average value of 0.16,

which lies between ζMOE(0) = 0.19 and mina ζMOE(a) = 0.09. Depending on the experi-

ment, this represents 6% to 7% of the total sparse coding cost function value, showing the

efficiency of the proposed optimization.

Comments on parameter estimation: All the universal models presented so far, with

the exception of the conditional Jeffreys, depend on hyper-parameters which in principle

should be tuned for optimal performance (remember that they do not influence the uni-

versality of the model). If tuning is needed, it is important to remember that the proposed

universal models are intended for reconstruction coefficients of clean data, and thus their

hyper-parameters should be computed from statistics of clean data, or either by compensat-

ing the distortion in the statistics caused by noise (see for example [46]). Finally, note that

when D is linearly dependent and rank(D) = RM , the coefficients matrix A resulting from

an exact reconstruction of X will have many zeroes which are not properly explained by any

continuous distribution such as a Laplacian. We sidestep this issue by computing the statis-

tics only from the non-zero coefficients in A. Dealing properly with the case P(a = 0) > 0

is beyond the scope of this work.
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5 Experimental results

In the following experiments, the testing data X are 8×8 patches drawn from the Pascal

VOC2006 testing subset,7 which are high quality 640×480 RGB images with 8 bits per chan-

nel. For the experiments, we converted the 2600 images to grayscale by averaging the

channels, and scaled the dynamic range to lie in the [0,1] interval. Similar results to those

shown here are also obtained for other patch sizes.

5.1 Dictionary learning

For the experiments that follow, unless otherwise stated, we use a “global” overcomplete

dictionary D with K = 4M = 256 atoms trained on the full VOC2006 training subset us-

ing the method described in [47, 48], which seeks to minimize the following cost during

training,8

min
D,A

1

N

N
∑

j=1

n





x j −Da j







2
2+λψ(a j)

o

+µ




DT D






2
F , (C.21)

where ‖·‖F denotes Frobenius norm. The additional term, µ




DT D






2
F , encourages incoher-

ence in the learned dictionary, that is, it forces the atoms to be as orthogonal as possible.

Dictionaries with lower coherence are well known to have several theoretical advantages

such as improved ability to recover sparse signals [5, 49], and faster and better convergence

to the solution of the sparse coding problems (C.1) and (C.3) [50]. Furthermore, in [47] it

was shown that adding incoherence leads to improvements in a variety of sparse modeling

applications, including the ones discussed below.

We used MOE as the regularizer in (C.21), with λ = 0.1 and µ = 1, both chosen empiri-

cally. See [1, 8, 47] for details on the optimization of (C.3) and (C.21).

7http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html\#VOC2006
8While we could have used off-the-shelf dictionaries such as DCT in order to test our universal sparse coding

framework, it is important to use dictionaries that lead to the state-of-the-art results in order to show the
additional potential improvement of our proposed regularizers.
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5.2 MOE as a prior for sparse coding coefficients

We begin by comparing the performance of the Laplacian and MOE priors for fitting a single

global distribution to the whole matrix A. We compute A using (C.1) with ε ≈ 0 and then,

following the discussion in Section 4, restrict our study to the nonzero elements of A.

The empirical distribution of A is plotted in Figure C.3(a), along with the best fitting

Laplacian, MOE, JOE, and a particularly good example of the conditional Jeffreys (CMOE)

distributions.9 The MLE for the Laplacian fit is θ̂ = N1/‖A‖1 = 27.2 (here N1 is the number

of nonzero elements in A). For MOE, using (C.12), we obtained κ = 2.8 and β = 0.07.

For JOE, θ1 = 2.4 and θ2 = 371.4. According to the discussion in Section 3.3, we used the

value κ= 2.8 obtained using the method of moments for MOE as a hint for choosing n0 = 2

(κ0 = n0+1= 3≈ 2.8), yielding β0 = 0.07, which coincides with the β obtained using the

method of moments. As observed in Figure C.3(a), in all cases the proposed mixture models

fit the data better, significantly better for both Gamma-based mixtures, MOE and CMOE, and

slightly better for JOE. This is further confirmed by the Kullback-Leibler divergence (KLD)

obtained in each case. Note that JOE fails to significantly improve on the Laplacian mode

due to the excessively large estimated range [θ1,θ2]. In this sense, it is clear that the JOE

model is very sensitive to its hyper-parameters, and a better and more robust estimation

would be needed for it to be useful in practice.

Given these results, hereafter we concentrate on the best case which is the MOE prior

(which, as detailed above, can be derived from the conditional Jeffreys as well, thus repre-

senting both approaches).

From Figure C.1(e) we know that the optimal θ̂ varies locally across different regions,

thus, we expect the mixture models to perform well also on a per-atom basis. This is con-

firmed in Figure C.3(b), where we show, for each row ak, k = 1, . . . , K , the difference in KLD

9To compute the empirical distribution, we quantized the elements of A uniformly in steps of 2−8, which for
the amount of data available, gives us enough detail and at the same time reliable statistics for all the quantized
values.
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between the globally fitted MOE distribution and the best per-atom fitted MOE, the globally

fitted Laplacian, and the per-atom fitted Laplacians respectively. As can be observed, the KLD

obtained with the global MOE is significantly smaller than the global Laplacian in all cases,

and even the per-atom Laplacians in most of the cases. This shows that MOE, with only two

parameters (which can be easily estimated, as detailed in the text), is a much better model

than K Laplacians (requiring K critical parameters) fitted specifically to the coefficients as-

sociated to each atom. Whether these modeling improvements have a practical impact is

explored in the next experiments.

5.3 Recovery of noisy sparse signals

Here we compare the active set recovery properties of the MOE prior, with those of the

`1-based one, on data for which the sparsity assumption |A j| ≤ L holds exactly for all

j. To this end, we obtain sparse approximations to each sample x j using the `0-based

Orthogonal Matching Pursuit algorithm (OMP) on D [20], and record the resulting active

sets A j as ground truth. The data is then contaminated with additive Gaussian noise of

variance σ and the recovery is performed by solving (C.1) for A with ε= C Mσ2 and either

the `1 or the MOE-based regularizer for ψ(·). We use C = 1.32, which is a standard value in

denoising applications (see for example [9]).

For each sample j, we measure the error of each method in recovering the active set

as the Hamming distance between the true and estimated support of the corresponding

reconstruction coefficients. The accuracy of the method is then given as the percentage of

the samples for which this error falls below a certain threshold T . Results are shown in

Figure C.3(c) for L = (5, 10) and T = (2,4) respectively, for various values of σ. Note the

very significant improvement obtained with the proposed model.

Given the estimated active setA j , the estimated clean patch is obtained by projecting x j

onto the subspace defined by the atoms that are active according toA j , using least squares
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Figure C.3: (a) Empirical distribution of the coefficients in A for image patches (blue dots), best
fitting Laplacian (green), MOE (red), CMOE (orange) and JOE (yellow) distributions. The Laplacian
(KLD=0.17 bits) is clearly not fitting the tails properly, and is not sufficiently peaked at zero either.
The two models based on a Gamma prior, MOE (KLD=0.01 bits) and CMOE (KLD=0.01 bits), provide
an almost perfect fit. The fitted JOE (KLD=0.14) is the most sharply peaked at 0, but doest not fit the
tails as tight as desired. As a reference, the entropy of the empirical distribution is H = 3.00 bits.
(b) KLD for the best fitting global Laplacian (dark green), per-atom Laplacian (light green), global
MOE (dark red) and per-atom MOE (light red), relative to the KLD between the globally fitted MOE

distribution and the empirical distribution. The horizontal axis represents the indexes of each atom,
k = 1, . . . , K , ordered according to the difference in KLD between the global MOE and the per-atom
Laplacian model. Note how the global MOE outperforms both the global and per-atom Laplacian
models in all but the first 4 cases. (c) active set recovery accuracy of `1 and MOE, as defined in
Section 5.3, for L = 5 and L = 10, as a function of σ. The improvement of MOE over `1 is a factor
of 5 to 9. (d) PSNR of the recovered sparse signals with respect to the true signals. In this case
significant improvements can be observed at the high SNR range, specially for highly sparse (L = 5)
signals. The performance of both methods is practically the same for σ ≥ 10.
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(which is the standard procedure for denoising once the active set is determined). We

then measure the PSNR of the estimated patches with respect to the true ones. The results

are shown in Figure C.3(d), again for various values of σ. As can be observed, the MOE-

based recovery is significantly better, specially in the high SNR range. Notoriously, the more

accurate active set recovery of MOE does not seem to improve the denoising performance in

this case. However, as we will see next, it does make a difference when denoising real life

signals, as well as for classification tasks.

5.4 Recovery of real signals with simulated noise

This experiment is an analogue to the previous one, when the data are the original natural

image patches (without forcing exact sparsity). Since for this case the sparsity assumption

is only approximate, and no ground truth is available for the active sets, we compare the

different methods in terms of their denoising performance.

A critical strategy in image denoising is the use of overlapping patches, where for each

pixel in the image a patch is extracted with that pixel as its center. The patches are denoised

independently as M -dimensional signals and then recombined into the final denoised im-

ages by simple averaging. Although this consistently improves the final result in all cases,

the improvement is very different depending on the method used to denoise the individual

patches. Therefore, we now compare the denoising performance of each method at two

levels: individual patches and final image.

To denoise each image, the global dictionary described in Section 5.1 is further adapted

to the noisy image patches using (C.21) for a few iterations, and used to encode the noisy

patches via (C.2) with ε = C Mσ2. We repeated the experiment for two learning variants

(`1 and MOE regularizers), and two coding variants ((C.2) with the regularizer used for

learning, and `0 via OMP. The four variants were applied to the standard images Barbara,

Boats, Lena, Man and Peppers, and the results summarized in Table C.1. We show sample
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Figure C.4: Sample image denoising results. Top: Barbara, σ = 30. Bottom: Boats, σ = 40. From
left to right: noisy, `1/OMP, `1/`1, MOE/MOE. The reconstruction obtained with the proposed model
is more accurate, as evidenced by a better reconstruction of the texture in Barbara, and sharp edges
in Boats, and does not produce the artifacts seen in both the `1 and `0 reconstructions, which appear
as black/white speckles all over Barbara, and ringing on the edges in Boats.

results in Figure C.4. Although the quantitative improvements seen in Table C.1 are small

compared to `1, there is a significant improvement at the visual level, as can be seen in

Figure C.4. In all cases the PSNR obtained coincides or surpasses the ones reported in

[1].10

5.5 Zooming

As an example of signal recovery in the absence of noise, we took the previous set of images,

plus a particularly challenging one (Tools), and subsampled them to half each side. We then

simulated a zooming effect by upsampling them and estimating each of the 75% missing

pixels (see e.g., [51] and references therein). We use a technique similar to the one used

in [52]. The image is first interpolated and then deconvoluted using a Wiener filter. The

10Note that in [1], the denoised image is finally blended with the noisy image using an empirical weight,
providing an extra improvement to the final PSNR in some cases. The results in C.1 are already better without
this extra step.
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σ = 10

learning `1 MOE [1]

coding `0 `1 `0 MOE

barbara 30.4/34.4 31.2/33.8 30.5/34.4 30.9/34.4 34.4

boat 30.4/33.7 30.9/33.4 30.5/33.7 30.8/33.8 33.7

lena 31.8/35.5 32.4/35.1 32.1/35.6 32.3/35.6 35.5

peppers 31.6/34.8 32.1/34.6 31.8/34.9 32.0/34.9 34.8

man 29.6/33.0 30.6/32.9 29.7/33.0 30.2/33.1 32.8

AVERAGE 30.7/34.2 31.4/33.9 30.8/34.2 31.1/34.3 34.1

σ = 20

`1 MOE [1]

`0 `1 `0 MOE

26.5/30.6 26.9/30.2 26.8/30.7 27.0/30.9 30.8

26.9/30.2 27.2/30.1 27.1/30.3 27.3/30.4 30.3

28.3/32.3 28.6/32.0 28.7/32.3 28.8/32.4 32.4

28.3/31.9 28.7/31.8 28.6/31.9 28.7/32.0 31.9

25.8/28.8 26.3/28.9 26.0/28.9 26.2/29.0 28.8

27.0/30.6 27.4/30.4 27.3/30.6 27.5/30.8 30.6

σ = 30

`1 MOE [1]

`0 `1 `0 MOE

24.5/28.2 24.8/28.2 24.8/28.3 24.9/28.5 28.4

25.0/28.1 25.2/28.2 25.3/28.2 25.4/28.3 28.2

26.4/30.1 26.6/30.2 26.7/30.3 26.8/30.4 30.3

26.3/29.8 26.6/29.9 26.6/29.9 26.7/29.9 -

23.9/26.5 24.2/26.8 24.1/26.6 24.2/26.7 26.5

25.1/28.3 25.4/28.5 25.4/28.4 25.5/28.5 28.4

Table C.1: Denoising results: in each table, each column shows the denoising performance of a
learning+coding combination. Results are shown in pairs, where the left number is the PSNR be-
tween the clean and recovered individual patches, and the right number is the PSNR between the
clean and recovered images. Best results are in bold. The proposed MOE produces better final results
over both the `0 and `1 ones in all cases, and at patch level for all σ > 10. Note that the average
values reported are the PSNR of the average MSE, and not the PSNR average.

image cubic `0 `1 MOE

barbara 25.0 25.6 25.5 25.6
boat 28.9 29.8 29.8 29.9
lena 32.7 33.8 33.8 33.9
peppers 32.0 33.4 33.4 33.4
man 28.4 29.4 29.3 29.4
tools 21.0 22.3 22.2 22.3
AVER 22.8 24.0 24.0 24.1

Figure C.5: Zooming results. Left to right: summary, Tools image, detail of zooming results for the
framed region, top to bottom and left to right: cubic, `0, `1, MOE. As can be seen, the MOE result is as
sharp as `0 but produces less artifacts. This is reflected in the 0.1dB overall improvement obtained
with MOE, as seen in the leftmost summary table.
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deconvoluted image has artifacts that we treat as noise in the reconstruction. However,

since there is no real noise, we do not perform averaging of the patches, using only the

center pixel of x̂ j to fill in the missing pixel at j. The results are summarized in Figure C.5,

where we again observe that using MOE instead of `0 and `1 improves the results.

5.6 Classification with universal sparse models

In this section we apply our proposed universal models to a classification problem where

each sample x j is to be assigned a class label y j = 1, . . . , c, which serves as an index to the

set of possible classes,
�

C1,C2, . . . ,Cc
	

. We follow the procedure of [48], where the classi-

fier assigns each sample x j by means of the maximum a posteriori criterion (C.5) with the

term − log P(a) corresponding to the assumed prior, and the dictionaries representing each

class are learned from training samples using (C.21) with the corresponding regularizer

ψ(a) = − log P(a). Each experiment is repeated for the baseline Laplacian model, implied

in the `1 regularizer, and the universal model MOE, and the results are then compared. In

this case we expect that the more accurate prior model for the coefficients will result in an

improved likelihood estimation, which in turn should improve the accuracy of the system.

We begin with a classic texture classification problem, where patches have to be identi-

fied as belonging to one out of a number of possible textures. In this case we experimented

with samples of c = 2 and c = 3 textures drawn at random from the Brodatz database,11,

the ones actually used shown in Figure C.6. In each case the experiment was repeated

10 times. In each repetition, a dictionary of K = 300 atoms was learned from all 16×16

patches of the leftmost halves of each sample texture. We then classified the patches from

the rightmost halves of the texture samples. For the c = 2 we obtained an average error

rate of 5.13% using `1 against 4.12% when using MOE, which represents a reduction of

20% in classification error. For c = 3 the average error rate obtained was 13.54% using

11http://www.ux.uis.no/~tranden/brodatz.html
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Figure C.6: Textures used in the texture classification example.

`1 and 11.48% using MOE, which is 15% lower. Thus, using the universal model instead

of `1 yields a significant improvement in this case (see for example [8] for other results in

classification of Brodatz textures).

The second sample problem presented is the Graz’02 bike detection problem,12 where

each pixel of each testing image has to be classified as either background or as part of a

bike. In the Graz’02 dataset, each of the pixels can belong to one of two classes: bike

or background. On each of the training images (which by convention are the first 150

even-numbered images), we are given a mask that tells us whether each pixel belongs to

a bike or to the background. We then train a dictionary for bike patches and another for

background patches. Patches that contain pixels from both classes are assigned to the class

corresponding to the majority of their pixels.

In Figure C.7 we show the precision vs. recall curves obtained with the detection frame-

work when either the `1 or the MOE regularizers were used in the system. As can be seen,

the MOE-based model outperforms the `1 in this classification task as well, giving a better

precision for all recall values.

In the above experiments, the parameters for the `1 prior (λ), the MOE model (λMOE)

and the incoherence term (µ) were all adjusted by cross validation. The only exception is

the MOE parameter β , which was chosen based on the fitting experiment as β = 0.07.

12http://lear.inrialpes.fr/people/marszalek/data/ig02/
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Figure C.7: Classification results. Left to right: precision vs. recall curve, a sample image from the
Graz’02 dataset, its ground truth, and the corresponding estimated maps obtained with `1 and MOE

for a fixed threshold. The precision vs. recall curve shows that the mixture model gives a better
precision in all cases. In the example, the classification obtained with MOE yields less false positives
and more true positives than the one obtained with `1.

6 Concluding remarks

A framework for designing sparse modeling priors was introduced in this work, using tools

from universal coding, which formalizes sparse coding and modeling from a MDL perspec-

tive. The priors obtained lead to models with both theoretical and practical advantages over

the traditional `0 and `1-based ones. In all derived cases, the designed non-convex prob-

lems are suitable to be efficiently (approximately) solved via a few iterations of (weighted)

`1 subproblems. We also showed that these priors are able to fit the empirical distribution of

sparse codes of image patches significantly better than the traditional IID Laplacian model,

and even the non-identically distributed independent Laplacian model where a different

Laplacian parameter is adjusted to the coefficients associated to each atom, thus showing

the flexibility and accuracy of these proposed models. The additional flexibility, further-

more, comes at a small cost of only 2 parameters that can be easily and efficiently tuned

(either (κ,β) in the MOE model, or (θ1,θ2) in the JOE model), instead of K (dictionary size),

as in weighted `1 models. The additional accuracy of the proposed models was shown to

have significant practical impact in active set recovery of sparse signals, image denoising,

and classification applications. Compared to the Bayesian approach, we avoid the poten-

tial burden of solving several sampled sparse problems, or being forced to use a conjugate
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prior for computational reasons (although in our case, a fortiori, the conjugate prior does

provide us with a good model). Overall, as demonstrated in this paper, the introduction of

information theory tools can lead to formally addressing critical aspects of sparse modeling.

Future work in this direction includes the design of priors that take into account the

nonzero mass at a = 0 that appears in overcomplete models, and online learning of the

model parameters from noisy data, following for example the technique in [46].
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7 Appendix: Derivation of the MOE model

In this case we have P(a|θ) = θ e−θa and w(θ |κ,β) = 1
Γ(κ)θ

κ−1βκe−βθ , which, when

plugged into (C.9), gives

Q(a|β ,κ) =

∫ ∞

θ=0

θ e−θa 1

Γ(κ)
θκ−1βκe−βθ dθ =

βκ

Γ(κ)

∫ ∞

θ=0

e−θ(a+β)θκdθ .

After the change of variables u := (a + β)θ (u(0) = 0, u(∞) = ∞), the integral can be

written as

Q(a|β ,κ) =
βκ

Γ(κ)

∫ ∞

θ=0

e−u
�

u

a+ β

�k du

a+ β
=

βκ

Γ(κ)
(a+ β)−(κ+1)

∫ ∞

θ=0

e−uukdu

=
βκ

Γ(κ)
(a+ β)−(κ+1)Γ(κ+ 1) =

βκ

Γ(κ)
(a+ β)−(κ+1)κΓ(κ),

13http://www.di.ens.fr/willow/SPAMS/



152

obtaining Q(a|β ,κ) = κβκ(a + β)−(κ+1), since the integral on the second line is precisely

the definition of Γ(κ + 1). The symmetrization is obtained by substituting a by |a| and

dividing the normalization constant by two, Q(|a||β ,κ) = 0.5κβκ(|a|+ β)−(κ+1).

The mean of the MOE distribution (which is defined only for κ > 1) can be easily com-

puted using integration by parts,

µ(β ,κ) = κβκ
∫ ∞

0

u

(u+ β)(κ+1)
du = κβ

�

−
u

κ(u+ β)κ

�

�

�

�

∞

0
+

1

κ

∫ ∞

0

du

(u+ β)k

�

=
β

κ− 1
.

In the same way, it is easy to see that the non-central moments of order i are µi =
β

(κ−1
i )

.

The MLE estimates of κ and β can be obtained using any nonlinear optimization tech-

nique such as Newton method, using for example the estimates obtained with the method

of moments as a starting point. In practice, however, we have not observed any significant

improvement in using the MLE estimates over the moments-based ones.

Expected approximation error in cost function

As mentioned in the optimization section, the LLA approximates the MOE regularizer as

a weighted `1. Here we develop an expression for the expected error between the true

function and the approximate convex one, where the expectation is taken (naturally) with

respect to the MOE distribution. Given the value of the current iterate a(t) = a0, (assumed
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positive, since the function and its approximation are symmetric), the approximated regu-

larizer is ψ(t)(a) = log(a0+ β) +
1

|a0|+β
(a− a0). We have

Ea∼MOE(κ,β)

�

ψ(t)(a)−ψ(a)
�

=
∫ ∞

0

κβκ

(a+κ)κ+1

�

log(|a0+ β) +
1

a0+ β
(a− a0)− log(a+ β)

�

da

= log(a0+ β) +
a0

a0+ β
+
κβκ

a0+ β

∫ ∞

0

a

(a+ β)κ+1 da−κβκ
∫ ∞

0

log(a+ β)
(a+ β)κ+1 da

= log(a0+ β) +
a0

a0+ β
+

β

(a0+ β)(κ− 1)
− logβ −

1

κ
.

Derivation of the constrained Jeffreys (JOE) model

In the case of the exponential distribution, the Fisher Information Matrix in (C.15) evaluates

to

I(θ) =

¨

EP(·|θ̃)

�

∂ 2

∂ θ̃2
(− logθ + θ log a)

�«

�

�

�

�

�

θ̃=θ

=
�

EP(·|θ̃)

�

1

θ̃2

��
�

�

�

�

θ̃=θ
=

1

θ2 .

By plugging this result into (C.14) with Θ = [θ1,θ2], 0 < θ1 < θ2 < ∞ we obtain

w(θ) = 1
ln(θ2/θ1)

1
θ

. We now derive the (one-sided) JOE probability density function by plug-

ging this w(θ) in (C.9),

Q(a)=

∫ θ2

θ1

θ e−θa 1

ln(θ2/θ1)
dθ

θ
=

1

ln(θ2/θ1)

∫ θ2

θ1

e−θadθ =
1

ln(θ2/θ1)
1

a

�

e−θ1a − e−θ2a
�

.

Although Q(a) cannot be evaluated at a = 0, the limit for a→ 0 exists and is finite, so we

can just define Q(0) as this limit, which is

lim
a→0

Q(a) = lim
a→0

1

ln(θ2/θ1)a

�

1− θ1a+ o(a2)− (1− θ2a+ o(a2))
�

=
θ2− θ1

ln(θ2/θ1)
.
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Again, if desired, parameter estimation can be done for example using maximum like-

lihood (via nonlinear optimization), or using the method of moments. However, in this

case, the method of moments does not provide a closed form solution for (θ1,θ2). The

non-central moments of order i are

µi =

∫ ∞+

0

ai

ln(θ2/θ1)
1

a

�

e−θ1a − e−θ1a
�

da

=
1

ln(θ2/θ1)

(

∫ +∞

0

ai−1e−θ1ada−
∫ +∞

0

ai−1e−θ2ada

)

. (C.22)

For i = 1, both integrals in (C.22) are trivially evaluated, yielding µ1 =
1

ln(θ2/θ1)
(θ−1

1 −θ
−1
2 ).

For i > 1, these integrals can be solved using integration by parts:

µ+i =

∫ +∞

0

ai−1e−θ1ada = ai−1 1

(−θ1)
e−θ1a

�

�

�

�

+∞

0
−

1

(−θ1)
(i− 1)

∫ +∞

0

ai−2e−θ1ada

µ−i =

∫ +∞

0

ai−1e−θ2ada = ai−1 1

(−θ2)
e−θ2a

�

�

�

�

+∞

0
−

1

(−θ2)
(i− 1)

∫ +∞

0

ai−2e−θ2ada,

where the first term in the right hand side of both equations evaluates to 0 for i > 1. There-

fore, for i > 1 we obtain the recursions µ+i =
i−1
θ1
µ+i−1, µ−i =

i−1
θ2
µ−i−1, which, combined

with the result for i = 1, give the final expression for all the moments of order i > 0

µi =
(i− 1)!

ln(θ2/θ1)

�

1

θ i
1

−
1

θ i
2

�

, i = 1,2, . . . .

In particular, for i = 1 and i = 2 we have

θ1 =
�

ln(θ2/θ1)µ1+ θ
−1
2

�−1
θ2 =

�

ln(θ2/θ1)µ2+ θ
−2
1

�−1
,
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which, when combined, give us

θ1 =
2µ1

µ2+ ln(θ2/θ1)µ2
1

, θ2 =
2µ1

µ2− ln(θ2/θ1)µ2
1

. (C.23)

One possibility is to solve the nonlinear equation θ2/θ1 =
µ2+ln(θ2/θ1)µ2

1

µ2−ln(θ2/θ1)µ2
1

for u = θ1/θ2

by finding the roots of the nonlinear equation u=
µ2+ln uµ2

1

µ2−ln uµ2
1

and choosing one of them based

on some side information. Another possibility is to simply fix the ratio θ2/θ1 beforehand

and solve for θ1 and θ2 using (C.23).

Derivation of the conditional Jeffreys (CMOE) model

The conditional Jeffreys method defines a proper prior w(θ) by assuming that n0 samples

from the data to be modeled a were already observed. Plugging the Fisher information for

the exponential distribution, I(θ) = θ−2, into (C.18) we obtain

w(θ) =
P(an0 |θ)θ−1

∫

Θ
P(an0 |ξ)ξ−1dξ

=
(
∏n0

j=1 θ e−θa j )θ−1

∫ +∞
0
(
∏n0

j=1 ξe−ξa j )ξ−1dξ
=

θ n0−1e−θ
∑n0

j=1 a j

∫ +∞
0

ξn0−1e−ξ
∑n0

j=1 a j dξ
.

Denoting S0 =
∑n0

j=1 a j and performing the change of variables u := S0ξ we obtain

w(θ) =
θ n0−1e−S0θ

S−n0
0

∫ +∞
0

un0−1e−udu
=

Sn0
0 θ

n0−1e−S0θ

Γ(n0)
,

where the last equation derives from the definition of the Gamma function, Γ(n0). We see

that the resulting prior w(θ) is a Gamma distribution Gamma(κ0,β0) with κ0 = n0 and

β0 = S0 =
∑n0

j=1 a j .
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8 Supplementary material

Proposition 2. Let D be a dictionary of normalized atoms, that is,




dk







2 = 1, k = 1, . . . , p.

Let G = DᵀD be its Gram matix. Denote by ρ(D) the spectral norm of D, that is, ρ(D) =
p

‖G‖2. Define the cumulative mutual coherence of D as

µ̄(D) =max
k

∑

r 6=k

|dᵀr dk|.

Then we have that

ρ(D)≤
p

1+ µ̄(D).

Proof. Let λ(G) denote the set of eigenvalues of G (which are positive by the definition

of G). By definition, we have ‖G‖2 := λmax := max{λ(G)}. Using the Gersghorin Circle

Theorem [53, pp. 320–321], we have that λ(G)⊆ ∪K
k=1Ck, where

Ck =







y : |y − gkk| ≤
∑

r 6=k

|gkr |







(C.24)

and gkr = dT
k dr are the elements of G. Since the atoms are normalized, we have that

gkk = 1, ∀ k. We also have by definition of µ̄(D) that
∑

r 6=k |gkr | ≤ µ̄(D). Plugging these

two values in (C.24) we obtain that λmax ≤ 1+ µ̄(D). Finally, using the definition of ρ(D)

we conclude that

ρ(D) =
p

λmax ≤
p

1+ µ̄(D).
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An MDL framework for sparse coding and dictionary learning

Ignacio Ramírez and Guillermo Sapiro

Department of Electrical and Computer Engineering, University of Minnesota.

The power of sparse signal modeling with learned over-complete dictionar-
ies has been demonstrated in a variety of applications and fields, from signal
processing to statistical inference and machine learning. However, the statis-
tical properties of these models, such as under-fitting or over-fitting given sets
of data, are still not well characterized in the literature. As a result, the suc-
cess of sparse modeling depends on hand-tuning critical parameters for each
data and application. This work aims at addressing this by providing a practi-
cal and objective characterization of sparse models by means of the Minimum
Description Length (MDL) principle – a well established information-theoretic
approach to model selection in statistical inference. The resulting framework
derives a family of efficient sparse coding and dictionary learning algorithms
which, by virtue of the MDL principle, are completely parameter free. Fur-
thermore, such framework allows to incorporate additional prior information
to existing models, such as Markovian dependencies, or to define completely
new problem formulations, including in the matrix analysis area, in a natural
way. These virtues will be demonstrated with parameter-free algorithms for the
classic image denoising and classification problems, and for low-rank matrix re-
covery in video applications.

1 Introduction

A sparse model is one in which signals of a given type y ∈ Rm can be represented accurately

as sparse linear combinations of the columns (atoms) of a learned dictionary D ∈ Rm×p,

163
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y= Da+ e, where by accurate we mean that ‖e‖ �




y




 (in some norm), and by sparse we

mean that the number of non-zero elements in a, denoted by ‖a‖0, is small compared to its

dimension p. These concepts will be formalized in the next section.

Such models, especially when D is learned from training samples, are by now a well

established tool in a variety of fields and applications, see [1, 2, 3] for recent reviews.

When sparsity is a modeling device and not an hypothesis about the nature of the an-

alyzed signals, parameters such as the desired sparsity in the solutions, or the size p of the

dictionaries to be learned, play a critical role in the effectiveness of sparse models for the

data and tasks at hand. However, lacking theoretical guidelines for such parameters, pub-

lished applications based on learned sparse models often rely on either cross-validation or

ad-hoc methods for determining such critical parameters (an exception for example being

the Bayesian approach, e.g., [4]). Clearly, such techniques can be impractical and/or inef-

fective in many cases. This in turn hinders the further application of such models to new

types of data and applications, or their evolution into different, possibly more sophisticated,

models.

At the bottom of the aforementioned problem lie fundamental questions such as: How

rich or complex is a sparse model? How does this depend on the required sparsity of the

solutions, or the size of the dictionaries? What is the best model for a given data class and a

given task?

The general problem of answering such questions and, in particular, the latter, is known

as model selection. Popular model selection techniques such as Akaike’s Information Crite-

rion (AIC) [5], Bayes Information Criterion (BIC) [6], and the Minimum Description Length

principle (MDL) [7, 8, 9], work by building a cost function which balances a measure of

goodness of fit with one of model complexity, and search for a model that minimizes such

cost. In this sense, these tools can be regarded as practical implementations of the Occam’s

razor principle, which states that, given two (equally accurate) descriptions for a given
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phenomenon, the simpler one is usually the best.

In the Minimum Description Length principle, given a family or model classM of can-

didate models indexed by a parameter M , and a data sample y, the best model M̂ ∈M is

the one that can be used to describe y completely (including the parameters M themselves)

with the fewest number of bits,

M̂ = arg min
M∈M

L(y, M), (D.1)

where L(y, M) is a codelength assignment function which defines the theoretical codelength

required to describe (y, M) uniquely, and which is a key component of any MDL-based

framework. The underlying idea of MDL is that compressibility is a good indirect way of

measuring the ability of a model to capture regularity from the data. Common practice in

MDL uses the Ideal Shannon Codelength Assignment [10, Chapter 5] to define L(y, M) in

terms of a probability assignment P(y, M) as L(y, M) = − logP(y, M) (all logarithms will be

assumed on base 2 hereafter). In this way, the problem of choosing L(·) becomes one of

choosing a suitable probability model for (y, M). Note here how MDL considers probability

models not as a statement about the true nature of the data, but only as a modeling tool.

If we now write P(y, M) = P(y|M)P(M), we obtain the more familiar penalized likelihood

form,

M̂ = arg min
M∈M

− logP(y|M)− log P(M), (D.2)

with − log P(M) representing the model complexity, or model cost, term.

The use of MDL for sparse signal modeling has been explored for example in the context

of wavelet-based denoising (where M = a ∈ Rm, p = m and D ∈ Rm×m is fixed) of images

corrupted by additive white Gaussian noise (AWGN) [11, 12, 13, 14, 15]. In [11, 12, 13],

the data is described using (D.2) with − log P(y|a) assumed to be solely due to noise, and an
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L(a) term which exploits sparsity,

â= arg min
a∈M

1

2σ2
e





y−Da






2
2+ L(a). (D.3)

Here the first term corresponds to the ideal codelength, up to a constant, of an IID Gaussian

sequence of zero mean and known variance σ2
e . The difference between [11, 12, 13] lies

in the definition of L(a). The line of work [14, 15] follows the modern MDL approach by

using sophisticated tools from coding theory, the so called one-part universal codes, which

encodes (y,a) jointly, and reduces the arbitrariness in defining L(a). However, such tools

can only be applied for certain choices of P(y|a) and P(a). In the case of [14, 15], the choice

is to use continuous Gaussian models for both. As Gaussian models are not well suited to

the typically observed statistical properties of such data, the performance of the resulting

denoisers for example is very poor compared to the current state-of-the-art.

The present work extends and/or improves on the aforementioned work in the follow-

ing ways:1

• MDL-based sparse coding is extended to the case of non-orthonormal, possibly over-

complete and learned dictionaries D. As we will see in Section 5, this extension, critical

to deal with modern, very successful sparse modeling approaches, poses not only

new design problems but also significant computational challenges compared to the

orthonormal case.

• Efficient codelengths (probability distributions) for the different components to en-

code (error, coefficients, dictionary) are obtained by applying universal coding schemes

to priors that are suited to the typically observed statistics of such data.

• As a particular point of the above item, systematic model-fit deviations are naturally
1This paper extends preliminary results reported in [16]. In particular, new dictionary learning algorithms

are developed which include `1 atom regularization, forward and backward dictionary size adaptation. We also
develop a new model for the low-rank matrix approximation problem.
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taken into account in P(y|a). The resulting fitting terms fall into the category of

robust estimators (see [17]), thus marrying robust statistics with information theory

and with sparse modeling (dictionary learning).

• We comply with the basic MDL sanity check, meaning, that the theoretical codelengths

obtained are smaller than a “raw” description of the data. We do so by including

quantization in our models, and treating its effect rigorously.

• Dictionary learning within the MDL framework allows us to optimize both the number

of atoms p, as well as their structure, resulting in a natural and objective form of

regularization for D.

• Structure is naturally added to the sparse models in the form of Markovian depen-

dencies between adjacent data samples. We also show an extension of the model to

the problem of low-rank matrix completion.

As a result of the above features, we obtain for the first time an MDL-based, parameter-

free framework for signal modeling that is able to yield state-of-the-art results.

At the theoretical level, this brings us a step closer to the fundamental understanding

of learned sparse models and brings a different perspective, that of MDL, into the sparse

modeling world.

The remainder of this paper is organized as follows. Sparse models, and the associated

notation, are described in detail in Section 2. Section 3 introduces MDL, and its application

to sparse models. In Section 4 we present the probability models used to assign codelengths

to different parts of the encoded data, while sections 5 and 6 describe the actual sparse cod-

ing and dictionary learning algorithms developed. Experimental results follow in Section 7,

and the paper is concluded in Section 8.
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2 Background on sparse modeling

Assume we are given n m-dimensional data samples ordered as columns of a matrix Y =

[y1|y2| . . . |yn] ∈ Rm×n. Consider a linear model for Y, Y= DA+E, where D= [d1|d2| . . . |dp]

is an m×p dictionary consisting of p atoms, A = [a1|a2| . . . |an] ∈ Rp×n is a matrix of

coefficients where each j-th column a j specifies the linear combination of columns of D

that approximates y j , and E= [e1|e2| . . . |en] ∈ Rm×n is a matrix of approximation errors.

We define the support, or active set, of a vector a ∈ Rp as supp(a) =
�

k : ak 6= 0
	

. Let

Γ = supp(a). We also represent the support of a as a binary vector z ∈ {0, 1}p such that

zi = 1 for i ∈ Γ, and 0 otherwise. We refer to the sub-vector in R|Γ| of non-zero elements

of a as either a[Γ] or a[z]. Both conventions are extended to refer to sets of columns of

matrices, for example, D[Γ] is the matrix formed by the |Γ| columns of D indexed by Γ. We

will use the pseudo-norm ‖a‖0 := |Γ| =
∑

z to denote the number of non-zero elements

of a. We say that the model is sparse if we can achieve




e j







2 �




y j







2 and ‖a‖0 � p

simultaneously for all or most j = 1, . . . , n.

The result of quantizing a real-valued variable y to precision δ is denoted by
�

y
�

δ. This

notation is extended to denote element-wise quantization of vector (e.g., [e]) and matrix

operands (e.g., [E]).

2.1 Sparse coding

One possible form of expressing the sparse coding problem is given by

â j=arg min
u∈Rp





y j−Du






2 s.t. ‖u‖0 ≤ γ, (D.4)

where γ � p indicates the desired sparsity level of the solution. Since problem (D.4) is

non-convex and NP-hard, approximate solutions are sought. This is done either by using

greedy methods such as Matching Pursuit (MP) [18], or by solving a convex approximation
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to (D.4), commonly known as the lasso [19],

â j = arg min
u∈Rp

1

2





y j −Du






2 s.t. ‖u‖1 ≤ τ. (D.5)

There exists a body of results showing that, under certain conditions on γ and D, the

problem (D.4) can be solved exactly via (D.5) or MP (see for example [1, 20]). In other

cases, the objective is not to solve (D.4), but to guarantee some property of the estimated

â j . For example, in the above mentioned case of AWGN denoising in the wavelets domain,

the parameter τ can be chosen so that the resulting estimators are universally optimal with

respect to some class of signals [21]. However, if D is arbitrary, no such choice exists. Also,

if D is orthonormal, the problem (D.5) admits a closed form solution obtained via the so-

called soft thresholding [21]. However, again, for general D, no such solution exists, and

the search for efficient algorithms has been a hot topic recently, e.g., [22, 23, 24].

2.2 Dictionary learning

When D is an optimization variable, we refer to the resulting problem as dictionary learning:

(Â, D̂) = arg min
A,D

n
∑

j=1

1

2





y j −Da j







2
2 s.t.





a j







r ≤ τ∀ j,




dk







2 ≤ 1∀k, (D.6)

with 0 ≤ r ≤ 1. The constraint




dk







2 ≤ 1 , k = 1, . . . , p, is necessary to avoid an arbitrary

decrease of the cost function by setting D← αD, A← 1
α

A, for any α > 1. The cost function

in (D.6) is non-convex in (A,D), so that only local convergence can be guaranteed. This is

usually achieved using alternate optimization in D and A. See for example [25, 26] and

references therein.
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2.3 Issues with traditional sparse models: a motivating example

Consider the K-SVD-based [25] sparse image restoration framework [27]. This is an `0-

based dictionary learning framework, which approximates (D.6) for the case r = 0 by

alternate minimization. In the case of image denoising, the general procedure can be sum-

marized as follows:

1. An initial, global dictionary D0 is learned using training samples for the class of data

to be processed (in this case small patches of natural images). The user must supply

a patch width w, a dictionary size p and a value for τ.

2. The noisy image is decomposed into overlapping w×w patches (one patch per pixel

of the image), and its noisy patches are used to further adapt D using the following

denoising variant of (D.6),

(D̂, Â) = arg min
D,A

n
∑

j=1





a j







0 , s.t.
1

2





y j −Da j







2
2 ≤ Cσ2 ,





dk







2 = 1 , k = 1, . . . , p.

(D.7)

Here the user must further supply a constant C (in [27], it is 1.32), the noise variance

σ2, and the number of iterations J of the optimization algorithm, which is usually

kept small to avoid over-fitting (the algorithm is not allowed to converge).

3. The final image is constructed by assembling the patches in Ŷ = D̂Â into the corre-

sponding original positions of the image. The final pixel value at each location is an

average of all the patches to which it belongs, plus a small fraction 0 ≤ λ ≤ 1 of the

original noisy pixels (λ= 30/σ in [27]).

Despite the good results obtained for natural images, several aspects of this method are

not satisfactory:
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• Several parameters (w, p, τ, C , J , λ) need to be tuned. There is no interpretation, and

therefore no justifiable choice for these parameters, other than maximizing the empirical

performance of the algorithm (according to some metric, in this case PSNR) for the data

at hand.

• The effect of such parameters on the result is shadowed by the effects of later stages

of the algorithm and their associated parameters (e.g. overlapping patch averaging).

There is no fundamental way to optimize each stage separately.

As a partial remedy to the first problem, Bayesian sparse models were developed (e.g.,

[4]) where these parameters are assigned prior distributions which are then learned from

the data. However, this approach still does not provide objective means to compare dif-

ferent models (with different priors, for example). Further, the Bayesian technique implies

having to repeatedly solve possibly costly optimization problems, increasing the computa-

tional burden of the application.

As mentioned in the introduction, this work proposes to address the above practical

issues, as well as to provide a new angle into dictionary learning, by means of the MDL

principle for model selection. The details on how this is done are the subject of the following

sections.

3 Sparse model selection and MDL

Given data Y, a maximum support size γ and a dictionary size p, traditional sparse modeling

provides means to estimate the best model M = (A,D) for Y within the setM (γ, p) defined

as

M (γ, p) :=
¦

(A,D) :




a j







0 ≤ γ, j = 1, . . . , n,D ∈ Rm×p
©

. (D.8)
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We call such set a sparse model class with hyper-parameters (γ, p). Such classes are nested

in the following way: first, for a fixed dictionary size p we have M (γ− 1, p) ⊂ M (γ, p).

Also, for fixed γ, if we considerM (γ, p− 1) to be a particular case ofM (γ, p) where the

p-th atom is all-zeroes and ap j = 0, ∀ j, then we also have thatM (γ, p− 1)⊂M (γ, p).

If one wants to choose the best model among all possible classesM (γ, p), the problem

becomes one of model selection. The general objective of model selection tools is to define

an objective criterion for choosing such model. In particular, MDL model selection uses

codelength as such criterion. More specifically, this means first computing the best model

within each family as

(A(γ, p),D(γ, p)) = argmin{L(Y,A,D) : (A,D) ∈M (γ, p)},

and then choosing (γ̂, p̂) = argmin
�

L(Y,A(γ, p),D(γ, p)) : 0≤ γ≤ p, p > 0
	

.

When D is fixed, which is the case of sparse coding, the only model parameter is A,

and we have p + 1 possible classes, M (γ) =
¦

A :




a j







0 ≤ γ, j = 1, . . . , n
©

, one for each

0≤ γ≤ p. If each data sample y j from Y is encoded independently, then, as with traditional

sparse coding (the framework can also be extended to collaborative models), the model

selection problem can be broken into n sub-problems, one per sample, by redefining the

model class accordingly asM (γ) =
�

a : ‖a‖0 ≤ γ
	

. Clearly, in the latter case, the optimum

γ can vary from sample to sample.

Compared to the algorithm in Section 2.3, we have a fundamental, intrinsic measure

of the quality of each model, the codelength L(Y,A,D), to guide our search through the

models, and which is unobscured from the effect of possible later stages of the application.

In contrast, there is no obvious intrinsic measure of quality for models learned through

(D.8), making comparisons between models learned for different parameters (patch width
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w, regularization parameter τ, norm r, constants C ,λ) possible only in terms of the ob-

served results of the applications where they are embedded. The second advantage of this

framework is that it allows to select, in a fundamental fashion, the best model parameters

automatically, thus resulting in parameter-free algorithms.2

Such advantages will be of practical use only if the resulting computational algorithms

are not orders of magnitude slower than the traditional ones, and efficient algorithms are

a critical component of this framework, see Section 5.

3.1 A brief introduction to MDL

For clarity of the presentation, in this section we will consider D fixed, and a single data

sample y to be encoded. The Minimum Description Length principle was pioneered by

Rissanen [7] in what is called “early MDL,” and later refined by himself [8] and other

authors to form what is today known as “modern MDL” (see [28] for an up-to-date extensive

reference on the subject). The goal of MDL is to provide an objective criterion to select the

model M , out of a family of competing models M , that gives the best description of the

given data y. In this case of sparse coding with fixed dictionary we have M = a.

The main idea of MDL is that, the best model for the data at hand is the one that is

able to capture more regularity from it. The more regularity a model captures, the more

succinct the description of the data will be under that model (by avoiding redundancy in

the description). Therefore, MDL will select the best model as the one that produces the

shortest (most efficient) description of the data, which in our case is given by L(y,a).

As mentioned in Section 1, MDL translates the problem of choosing a codelength func-

tion L(·) to one of choosing probability models by means of the ideal Shannon codelength

2For the case of image processing, the patch width w is also a relevant parameter that could be automatically
learned with the same MDL-based framework presented here. However, since it is specific to image processing,
and due to space constraints and for clarity of the exposition, it will not be considered as part of the model
selection problem hereafter.
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assignment L(y,a) = − logP(y,a). It is common to extend such ideal codelength to contin-

uous random variables x with probability density function p(x) as L(x) = − logp(x), by

assuming that they will be quantized with sufficient precision so that

P([x]δ)≈ p(x)δ, (D.9)

and disregarding the constant term − logδ in L(x), as it is inconsequential for model se-

lection. However, in our framework, the optimum quantization levels will often be large

enough so that such approximations are no longer valid.

To produce a complete description of the data y, the best model parameters M̂ used

to encode y need to be included in the description as well. If the only thing we know is

that M̂ belongs to a given class M , then the cost of this description will depend on how

large and complex M is. MDL will penalize more those models that come from larger

(more complex) classes. This is summarized in one of the fundamental results underlying

MDL [8], which establishes that the minimum number of bits required for encoding any

data vector y using a model from a classM has the form LM (y) =LM (y)+C (M ), where

LM (y) is called the stochastic complexity, which depends only on the particular instance of

y being encoded, and C (M ) is an unavoidable parametric complexity term, which depends

solely on the structure, geometry, etc., of the model classM .

In the initial version of MDL [7], the parameter M̂ was first encoded separately using

L(M̂) bits, and then y was described given M̂ using L(y|M̂) bits, so that the complete

description of y required L(y|M̂)+ L(M̂) bits. This is called a two-parts code. An asymptotic

expression of this MDL was developed in [7] which is equivalent to the BIC criterion [6],

only in the asymptotic regime. As we will see next, modern MDL departs significantly from

this two-parts coding scheme.
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3.2 Modern MDL and universal coding

The main difference between “early” [7] and “modern” [8, 9] MDL is the introduction

of universal codes as the main building blocks for computing codelengths. In a nutshell,

universal coding can be regarded as an extension of the original Shannon theory to the case

where the probability model P(·) of the data to be encoded is not fully specified, but only

known to belong to a certain class of candidate probability models M (recall that classic

Shannon theory assumes that P(·) is perfectly known). For example, M can be a family

of parametric distributions indexed by some parameter M . Akin to Shannon theory, for an

encoding scheme to be called universal, the codelengths it produces need to be optimal, in

some sense, with respect to the codelengths produced by all the models inM .

Various universality criteria exist. For example, consider the codelength redundancy

of a model Q(·), R(y;Q) = − log Q(y) −
�

argminP∈M − logP(y)
�

. In words, this is the

codelength overhead obtained with Q(·) for describing an instance y, compared to the

best model in M that could be picked for y, with hindsight of y. For example, if M is

a parametric family, such model is given by the maximum likelihood (ML) estimator of

M . A model Q(·) is called minimax universal, if it minimizes the worst case redundancy,

R(Q) = argmaxy∈RmR(y;Q). One of the main techniques in universal coding is one-part

coding, where the data y and the best class parameter M̂ are encoded jointly. Such codes are

used in the line of work of “MDL denoising” due to Rissanen and his collaborators [14, 15].

However, applying one-part codes at this level restricts the probability models to be used.3

As a consequence, the results obtained with this approach in such works are not compet-

itive with the state-of-the-art. Therefore, in this work, we maintain a two-parts encoding

scheme (or three parts, if D is to be encoded as well), where we separately describe a, D,

and y given (a,D). We will however use universal codes to describe each of these parts as

3In particular, those used in [14, 15] are based on the Normalized Maximum Likelihood (NML) universal
model [29], which requires closed-form MLE estimators for its evaluation, something that cannot be obtained
for example with a Laplacian prior on a and non-orthogonal dictionaries.
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efficiently as possible. Details on this are given in the next section.

4 Encoding scheme

We now define the models and encoding schemes used to describe each of the parts that

comprise a sparse model for a data sample y; that is, the dictionary D, the coefficients a,

and the approximation error e = y−Da (which can include both the noise and the model

deviation), which can be regarded as the conditional description of y given the model

parameters (a,D). The result will be a cost function L(y) of the form (note that y= Da+ e

can be fully recovered from (e,a,D)),

L(y,a,D) = L(e|a,D) + L(a|D) + L(D).

While computing each of these parts, three main issues need to be dealt with:

1. Define appropriate probability models. Here, it is fundamental to incorporate as

much prior information as possible, so that no cost is paid in learning (and thereby

coding) already known statistical features of the data. Examples of such prior infor-

mation include sparsity itself, invariance to certain transformations or symmetries,

and (Markovian) dependencies between coefficients.

2. Deal with unknown parameters. We will use universal encoding strategies to en-

code data efficiently in terms of families of probability distributions.

3. Model the effect of quantization. All components, e,a,D need to be quantized to

some precisions, respectively δe,δa,δd , in order to obtain finite, realistic codelengths

for describing y (when the precision variable is obvious from the argument to which

it is applied, we drop it to simplify the notation, for example, we will write [e]δe
as

[e]). This quantization introduces several complications, such as optimization over
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discrete domains, increase of sparsity by rounding to zero, increase of approximation

error, and working with discrete probability distributions.

All such issues need to be considered with efficiency of computation in mind. The discus-

sion will focus first on the traditional, single-signal case where each sample y is encoded

separately from the rest. At the end of this section, we will also discuss the extension of this

framework to a multi-signal case, which has several algorithmic and modeling advantages

over the single-signal case, and which forms the basis for the dictionary learning algorithms

described later.

4.1 Encoding the sparse coefficients

Probability model: Each coefficient in a is modeled as the product of three (non-independent)

random variables, A = ZS(V + δa), where Z = 1 implies A 6= 0, S = sgn(A), and V =

max{|A| −δa, 0} is the absolute value of A corrected for the fact that V ≥ δa when Z = 1. 4

We model Z as a Bernoulli variable with P(Z = 1) = ρa. Conditioned on Z = 0,

S = V = 0 with probability 1, so no encoding is needed.5 Conditioned on Z = 1, we assume

P(S = −1) = P(S = 1) = 1/2, and V to be a (discretized) exponential, Exp(θa). With

these choices, P(SV |Z = 1) is a (discretized) Laplacian distribution, which is a standard

model for transform (e.g., DCT, Wavelet) coefficients. This encoding scheme is depicted

in Figure D.1(a,b). The resulting model is a particular case of the “spike and slab” model

used in statistics (see [30] and references therein). A similar factorization of the sparse

coefficients is used in the Bayesian framework as well [4].

Unknown parameters: According to the above model, the resulting encoding scheme for

the coefficients (sparse code) is a three-parts code: L(a) = L(z) + L(s|z) + L(a|s,z). The

4Note that it is necessary to encode S and V separately, instead of considering SV as one random variable,
so that the sign of A can be recovered when |V |= 0.

5We can easily extend the proposed model beyond S = V = 0 and consider a distribution for S, V when
Z = 0. This will naturally appear as part of the coding cost. This extends standard sparse coding to the case
where the non-sparse component of the vector are not necessarily zero.
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Figure D.1: Encoding of the sparse code. (a) After quantization (here δa=1), each coefficient ak
is decomposed into three variables, zk = 1(ak), sk = sgn(ak) and vk =max{|ak| − δa, 0}. These are
respectively modeled by random variables Z ∼ Ber(ρa), S ∼ Ber(1/2), V ∼ Exp(θa) (only the shaded
numbers are actually encoded) (b) Scheme of the mapping from continuous coefficients (random
variable A), into Z , S and V. (c) Ideal codelength for the MOE model for V , − logqV (V ;κ,β). This
is a smooth, concave function.

support z is described using the enumerative two-parts code [31], which first describes its

size, ‖a‖0, using log p bits, and then the particular arrangement of the ones in z using

log
� p
‖a‖0

�

bits. The total codelength for coding z is then L(z) = log p + log
� p
‖a‖0

�

. This

is a universal encoding scheme, and as such is more efficient than those used previously

in [11, 13]. Then, L(s|z) = ‖a‖0 bits are needed to encode s[z], the actual signs of the

non-zero coefficients. Finally, we need to encode the magnitudes of the ‖a‖0 non-zero

coefficients, a[z]. We do so by considering it first as a sequence of exponentially-distributed

continuous random variables, to which quantization is applied later. Since the parameter θa

of the exponential is unknown,6 we use a universal model qV (·) for the class of continuous

exponential distributions instead. We obtain such universal model qV (V ) via a convex

mixture, one of the standard techniques for this,

qV (V ;κa,βa) =

∫ +∞

0

Γ(θ ;κa,βa)
θ

2
e−θ |V |dθ , (D.10)

6This parameter is related to the sparsity level, and as discussed in Section 2.3, is usually assumed known
or determined via cross-validation. Following [32], here we use tools from universal modeling, which permit
to also automatically handle the non-stationarity of this parameter and its expected variability for different
non-zero entries of a.
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where the mixing function Γ(θ ;κ,β) = Γ(κ)−1θκ−1βκe−βθ , is the Gamma density function

of (non-informative) shape and scale parameters κ and β . With this choice, (D.10) has a

closed form expression, and the degenerate cases θ = 0 and θ =∞ are given zero weight.

The resulting Mixture of Exponentials (MOE) density function qV (V ), is given by (see [32]

for details),

qV (V ;βa,κa) = κaβ
κa
a (V + βa)

−(κa+1), V ∈ R+.

Note that the universality of this mixture model does not depend on the values of the

parameters κa,βa, and guided by [32], we set κa = 3.0 and βa = 50. The ideal Shannon

codelength for this density function distribution is given by − logqV (V ;κa,βa) =− logκa−

κa logβa + (κa + 1) log(V + βa). This function, shown in Figure D.1(c), is non-convex,

however continuous and differentiable for V > 0.

Quantization: On one hand, quantizing the coefficients to a finite precision δa increases

the approximation/modeling error, from y − Da to y − D [a]δa
. This additional error,

D(a− [a]δa
), will clearly increase with δa. On the other hand, larger δa will reduce the

description length of the non-zero values of the coefficients, [v]δa
. In practice, for reason-

able quantization steps, the error added by such quantization is negligible compared to the

approximation error. For example, for describing natural images divided in patches of 8×8

pixels, our experiments indicate that there is no practical advantage in using a value smaller

than δa = 16. Consequently, our current algorithms do not attempt to optimize the code-

length on this parameter, and we have kept this value fixed throughout all the experiments

of Section 7.

4.2 Encoding the error

Probability model: Most sparse coding frameworks, including all the mentioned MDL-

based ones, assume the error e to be solely due to measurement noise, typically of the
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AWGN type. However, e actually contains a significant component which is due to a sys-

tematic deviation of the model from the clean data. Following this, we model the elements

of e as samples of an IID random variable E which is the linear combination of two inde-

pendent variables, E = Ê + N . Here N ∼ N (0,σ2
e ) represents random measurement noise

in y. We assume the noise variance σ2
e known, as it can be easily and reliably estimated

from the input data (for example, taking the minimum empirical variance over a sufficient

number of sub-samples). The distribution of the second variable, Ê ∼ Lap(0,θe) is a Lapla-

cian of unknown parameter θe, which represents the error component due to the model

itself. The resulting continuous distribution pE(E), which we call “LG,” is the convolution

of the distributions of both components (see [33] for details on the derivation),

pE(E;σ2
e ,θe) =

∫ +∞

ζ=−∞

1
p

2πσ2
e

e
− ζ1

2σ2
e

1

2θe
e−

|E−ζ|
θe dζ

=
1

4θe
e
σ2

e
2θ2

e

�

eE/θe erfc

�

E +σ2
e/θep

2σe

�

+ e−E/θe erfc

�

−E +σ2
e/θep

2σe

��

, (D.11)

where erfc(u) = 2p
π

∫ +∞
u

e−t2
d t is the complimentary Gauss error function. The ideal code-

length, − log pE(E), is shown in Figure D.2(a) for various parameter values. This function

is convex and differentiable on R, which is nice for optimization purposes. Figure D.2(b)

shows its derivative, or so called “influence function” in robust statistics. It can be verified

that − logpE(E) behaves like a Laplacian with parameter θe for large values of E. Further,

since its derivative is bounded, the influence of outliers is diminished. In fact, − logpE(E)

is easily verified to be a ψ-type M-estimator, a family of functions used in robust statistics

(see [17]). Thus, using this model, we obtain an information-theoretic robust estimator,

which is consistent with the motivations leading to its use in our framework, and which has

a significant practical impact in the experimental results.

Unknown parameters: Since θe is unknown, encoding e efficiently calls for the use of

universal codes. In this case, again, we employ a mixture model. Since the parameter θe
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Figure D.2: Residual probability model. (a) Ideal codelength function of the “LG” distribution,
− log pE(E), (b) LG influence function, that is, (− log pE(y))′, (c) universal mixture for the LG model
(MOEG), (d) MOEG influence function.

comes from the underlying Laplacian component, we again use a Gamma for the mixing

function,

qE(E;σ2
e ,κe,βe) =

∫ +∞

0

Γ(θ ;κe,βe)pE(E;σ2
e ,θ)dθ . (D.12)

We call this model MOEG. As with the MOE model, the universality of this model is

guaranteed by the theory for the choice of its underlying mixing function, for any (non-

informative) κe and βe. In this case, we use κe = 3.0 and βe = δe. Also, we know from

the discussion above that σ2
e can be easily and reliably estimated from the data. Thus, we

can say that the model for E is parameter-free in this case as well. Figure D.2(c) shows

the numerical evaluation of the ideal Shannon codelength − logqE(E;σ2
e ,κe,βe), which is

non-convex. However, it is twice differentiable everywhere, again a desirable property for

optimization purposes (more on this in sections 5 and 6). As with the LG distribution,

− log qE(E) is an ψ-type M-estimator, in this case, a redescending M-estimator, since its

derivative (Figure D.2(d)) vanishes to 0 at ∞. As such, − logqE(E), derived from the

universal model corresponding to pE(E), can reject outliers even more aggressively than

− log pE(E), again marrying robust statistics with information theory in a natural way.

Quantization: To losslessly encode finite-precision input data such as digital images, the

quantization step of the error coefficients needs not be more than that of the data itself, δy ,
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and we simply quantize the error coefficients uniformly with step δe = δy . For example,

for 8-bit digital images, we set δe = δy = 1.

4.3 Model for the dictionary

Probability model: Dictionary learning practice shows that learned atoms, unsurprisingly,

present features that are similar to those of the original data. For example, the piecewise

smoothness of small image patches is to be expected in the atoms of learned dictionaries for

such data. This prior information, often neglected in dictionary learning algorithms, needs

to be taken into account for encoding such atoms efficiently.

We embody such information in the form of predictability. This is, we will encode

an atom d ∈ Rm as a sequence of causal prediction residuals, b ∈ Rm, bi+1 = di+1 −

d̃i+1(d1, d2, . . . , di), 1 ≤ i < m, a function of the previously encoded elements in d. In

particular, if we restrict d̃i+1 to be a linear function, the residual vector can be written as

b = Wd, where W ∈ Rm×m is lower triangular due to the causality constraint (this aspect

has important efficiency consequences in the algorithms to be developed in Section 6).

This is depicted in Figure D.3, along with the specific prediction scheme that we adopted

for the image processing examples in Section 7. In this case we consider an atom d to be

an
p

m×
p

m image patch, and use a causal bi-linear predictor where the prediction of each

pixel in the dictionary atom is given by north_pixel+west_pixel− northwest_pixel.

As a general model for linear prediction residuals, we assume b to be a sequence of IID

Laplacian samples of parameter θd . In principle, θd is also unknown. However, describing

D is only meaningful for dictionary learning purposes, and, in that case, D is updated

iteratively, so that when computing an iterate D(t) of D, we can use D(t−1) to estimate and

fix θd via ML (more on this θd later in Section 6). Thus, we consider θd to be known.

Quantization: When A is fixed during a dictionary learning iteration (which consists of

an alternate descent between D and A), we can view (A,Y) as n input-output training
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Figure D.3: Prediction scheme used for learning natural image patches dictionaries (in this example,
3×3 patches, and m = 9). An atom dk is arranged as a 3×3 patch, and a causal bi-linear predictor
(shown as a 2×2 template) with zero-padding (pixels outside of the patch are assumed 0) is applied
to it, producing a predicted atom d̂k and a residual bk = dk − d̂k. The previous operation can
be written as bk = Wdk, with W ∈ R9×9 the linear mapping from atom to prediction residuals
corresponding to this example.

pairs, and D as the ML estimator of the linear coefficients describing such mapping via

Y = DA+ E. Based on this, we use the quantization step δd = 1/
p

n, which is an optimal

step for encoding the ML parameter in two-part codes, as described in [8, Theorem 1].

Computation: Computing L(D) is only relevant for learning purposes. In general, since




dk







2 ≤ 1, and




dk







2 ≤
p

m




dk







1, we have that θ̂d = (pm)−1
∑

k





dk







1 ≤ (p
p

m)−1 �

δd =
p

n, and the error of using the approximation (D.9) is not significant,

L(D) =
p
∑

k=1

L(dk)≈
p
∑

k=1

�

− logp(Wdk;θd)−m logδd
	

= θd

p
∑

k=1





Wdk







1+
mp

2
log n+ c,

(D.13)

where p(Wdk) is the IID Laplacian distribution over the k−th atom prediction residual vec-

tor Wdk, and c is a fixed constant. For p fixed (we will later see how to learn the dictionary

size p as well), the above expression is simply an `1 penalty on the atom prediction residual

coefficients. As we will see in Section 6, this allows us to use efficient convex optimization

tools to update the atoms.
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4.4 Extension to sequential (collaborative) coding

One natural assumption that we can often make on the set of data samples Y is that, be-

sides all being sparsely representable in terms of the learned dictionary D, they share other

statistical properties. For example, we can assume that the underlying unknown model

parameters, θe, ρa, θa, θd , are the same for all columns of the sparse data decomposition

(E, A).

Under such assumption, if we encode each column of Y sequentially, we can learn sta-

tistical information from the ones already encoded and apply it to estimate the unknown

parameters of the distributions used for encoding the following ones. The general idea is

depicted in Figure D.4(a). Concretely, suppose we have already encoded j−1 samples. We

can then use [e1,e2, . . . ,e( j−1)] to estimate θe, and [a1,a2, . . . ,a( j−1)] to estimate θa and

ρa, and “plug-in” these parameters to encode the j-th sample. This justifies the name of

this encoding method, which is known in the coding literature as sequential plug-in encod-

ing. This encoding strategy has several advantages: 1) For common parameter estimators

such as ML, this method can be shown to be universal; 2) Since all distribution parame-

ters are fixed (pre-estimated) when encoding the j-th sample, we can use the “original,”

non-universal distributions assumed for modeling e j (LG) and a j (Laplacian), which have

closed forms and are usually faster to compute (together with (D.9)) than their universal

mixture counterparts; 3) Furthermore, these original distributions are convex, so that in

this case, given a fixed support, we are able to exactly minimize the codelength over the

non-zero coefficient values; 4) With many samples available for parameter estimation, we

can potentially afford more complex models.

Residual: We estimate θe in two steps. First, since the random variable E is an independent

sum of two random variables, E = Ê+N , we have that var(E) = var(Ê)+var(N) = var(Ê)+

σ2
e . Now, since Ê is Laplacian, we have that var(Ê) = 2θ2

e . Combining both equations we

have that θe = 0.5
p

var(Ê)−σ2
e . With the noise variance σ2

e assumed known, and using
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Figure D.4: Collaborative encoding scheme. (a) In this example, 3 samples have already been
encoded, and we are about to encode sample 4. The formulas for estimating the various model
parameters are shown for j = 4, in particular those for the error and the coefficients associated to
the k-th atom (the k-th row of A). (b) Markov model for the coefficients support matrix Z. Here,
a sample patch y is about to be encoded. Here the first atom was only used by the pixel to the
west, so that the Markov state for modeling z1 is (n, w, nw) = (0, 1,0), and P(z1 = 1) = ρ1

(0,1,0). As
for the k-th atom, only the nw pixel has used it, so that the Markov state for zk is (0,0, 1), that is,
P(zk = 1) = ρk

(0,0,1).

the standard unbiased variance estimator, ˆvar(Ê) = (p( j− 1))−1




E[1,...,( j−1)]







2
F , we obtain

θ̂e = 0.5
q

max{(p( j− 1))−1




E[1,...,( j−1)]







2
F −σ

2
e , 0},

where the maximization guarantees that θ̂e ∈ R+.

Coefficients: In the case of a, we have in principle two unknown parameters, the prob-

ability of an element being non-zero, ρa, and the scale parameter of the Laplacian gov-

erning the non-zero values, θa (both previously handled with universal models). Here,

however, we extend the model, drawing from the well known empirical fact that coeffi-

cients associated to different atoms can have very different statistics, both in frequency

and variance. This is typical of DCT coefficients for example (see [34]), and has been

consistently observed for learned dictionaries as well [32]. Therefore, we will consider

a separate set of parameters (ρk
a ,θ k

a ) for each row k of A, ak. We update such parame-

ters from the coefficients observed in the respective row for the already-computed samples,
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(ak1, ak2, . . . , ak( j−1)), and encode each k-th coefficient in a j (more specifically, in z j , and

v j), as the j-th sample of the respective row. Concretely, let nk
1 =
∑( j−1)

j′=1 zk j′ be the number

of non-zero coefficients observed so far in the k-th row. For ρk
a , we use the Krichevsky-

Trofimov (KT) estimator [35],

ρ̂k
a =

nk
1 + 0.5

j
, (D.14)

which is a universal plug-in encoding scheme for Bernoulli sequences of unknown parame-

ter. For encoding vk j , we apply the ML estimator for the exponential family to the non-zero

coefficients observed so far in the k-th row. Recalling that vk j = max{|ak j′ | − δa, 0}, the

resulting estimator is given by

θ̂ k
a =

∑( j−1)
j′=1 max{|ak j′ | −δa, 0}

nk
1

.

Markovian dependencies: In many applications, spatially/temporally adjacent samples

are statistically dependent. For example, we may assume that an atom is more likely to

occur for a sample j if it has been used by, say, the ( j − 1)-th sample (see also [36]). In

that case, we may consider different estimations of ρk depending on the value of zk( j−1),

ρk
1 = P(zk j = 1|zk( j−1) = 1), and ρk

0 = P(zk j = 1|zk( j−1) = 0). In particular, for the im-

age processing results of Section 7, we use a Markovian model which depends on three

previous samples, corresponding to the (causal) neighboring west, north, and northwest

patches of the one being encoded. Thus, for each atom k we will have 8 possible pa-

rameters, ρk
(n,w,nw), (n, w, nw) ∈ {0,1}3, where each value of (n, w, nw) indicates a possible

Markov state in which a sample may occur. This is depicted in Figure D.4(b). For each state

(n, w, nw), we estimate ρk
(n,w,nw) using (D.14), with the average taken over the samples

which occur in the same state (n, w, nw).
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5 MDL based sparse coding

For the encoding problem, D is fixed (it has already been learned), and we consider en-

coding a single data sample y. The model selection problem here is that of choosing the

model (indexed by the sparse code a) among all the models belonging to the nested family

of model classes M (γ) =
�

a ∈ Rp,‖a‖0 ≤ γ
	

,γ = 0, . . . , p, that yields the smallest code-

length for describing y. In principle, this calls for finding the best model a(γ) within each

model classM (γ), and then selecting â= argmin0≤γ≤p L(y,a(γ)). However, in order to be

computationally efficient, and as with most sparse coding and model selection algorithms,

several simplifications and approximations are needed. Let us first consider the problem of

finding a(γ),

a(γ) := arg min
a∈M (γ)

L(y,a)

= arg min
a∈Rp
− log PE(y−Da)− logP(z)− log P(s|z)− logPV (a|s,z)

= arg min
a∈Rp
− log PE(y−Da)− log

�

p

‖a‖0

�

+ ‖a‖0− logPV (a) s.t. ‖a‖0 ≤ γ.

(D.15)

For quantized a, this is an optimization problem over a discrete, infinite domain, with a

non-convex (in the continuous domain) constraint, and a non-differentiable cost function

in a. Based on the literature on sparse coding, at least two alternatives can be devised at

this point. One way is to use a pursuit technique, e.g., [18]. Another option is to use

a convex relaxation of the codelength function, e.g., [37]. For the sake of brevity, here

we will describe an algorithm loosely based on the first alternative. Details on the convex

relaxation method for MDL-based sparse coding will be published elsewhere.

The pursuit-like algorithm, which we call COdelength-Minimizing Pursuit Algorithm
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(COMPA), is summarized in Algorithm 3. This is a non-greedy cross-breed between Match-

ing Pursuit (MP) and Forward Stepwise Selection (FSS) [38]. As with those methods,

COMPA starts with the empty solution a(0) = 0, and updates the value of one single co-

efficient at each iteration. Then, given the current correlation g(t) = De(t) between the

dictionary atoms and the current residual, each k-th coefficient in a(t) is tentatively incre-

mented (or decremented) by ∆k =
h

g(t)k

i

, and a candidate codelength L̂k is computed in

each case. The coefficient that produces the smallest L̂(y,a) is updated to produce a(t+1).

The logic behind this procedure is that the codelength cost of adding a new coefficient

to the support is usually very high, so that adding a new coefficient only makes sense if

its contribution is high enough to produce some noticeable effect in the other parts of the

codelength. A variant of this algorithm was also implemented where, for each candidate k,

the value of the increment ∆k was refined in order to minimize L̂k. However, this variant

turned out to be significantly slower, and the compression gains where below 0.01 bits per

sample (uncompressed codelength is 8 bits per sample). Assuming that L(t) is unimodal, the

algorithm stops if the codelength of a new iterate is larger than the previous one. To assess

the validity of this assumption, we also implemented a variant which stops, as MP or FSS,

when the residual-coefficients correlation




g(t)






∞ is no longer significant, which typically

requires many more iterations. With this variant we obtained a negligible improvement of

0.004 bits per sample, while increasing the computational cost about three times due to the

extra iterations required.

6 MDL based dictionary learning

Given that our sparse coding algorithm in Section 5 can select the best support size γ for

each sample in Y, the definition of the model class M (γ, p) given in Section 3, which

assumes the same γ for all samples in Y, is no longer appropriate (we could of course
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Figure D.5: Typical evolution of the COMPA algorithm. (a) coefficients. (b) codelength. The best
iterate (code) is marked with a black circle. Also note that describing the support (L(Z)) actually
takes more bits than describing the non-zero values (L(V )).

add 0-weight coefficients to make γ equal for all data). Instead, for dictionary learning,

we consider the model class familyM (p) =
¦

(A,D),D ∈ Rm×p,a j ∈M (γ;D), j = 1, . . . , n
©

,

where M (γ;D) is the model class family of sparse codes based on a fixed dictionary D

defined in Section 5, with the dependency on D made explicit. It is easy to see that the

model classesM (p) are nested. We now need to solve

(A(p),D(p)) = arg min
(A,D)∈M (p)

L(E,A,D), (D.16)

for p=0,1, . . ., and then choose (Â, D̂) = (A(p̂),D(p̂)) with the optimal dictionary size

p̂ = argmin
p

�

L(E,A(p),D(p)) : p=0, 1, . . .
	

.

As with sparse coding, here we exploit the nested nature of the model classes to speed

up the model selection. For this, we propose a forward-selection algorithm, described in

Algorithm 4, which starts from M (0) (the empty dictionary), and then approximates the

best model inM (p+ 1) by adding a new atom to the dictionary computed forM (p) and



190

Algorithm 3: COdelength Minimizing Pursuit Algorithm (COMPA)
Input: Data sample y, dictionary D
Output: â, ê
initialize t ← 0;a(0)← 0;e← y; L(0)← L(y,0); g(t)← DT e(t) ; // g(t) correlation of current residual with the
dictionary
repeat

for k← 1, 2, . . . , p do
∆k ← [g

(t)
k ]δa

; // step ∆k is correlation, quantized to prec. δa

L̃k ← L([e−∆kdk]δe
, a+∆kωk) ; // ωk= k-th canonical vec. of Rp

end
L(t+1)←min{ L̃k : k = 1, . . . , p} ;
a(t+1)← a(t) +∆k̂ωk̂ ; // update coefficients vector
g(t+1)← g(t) −∆k̂dk̂ ; // update correlation
t ← t + 1 ;

until L(t) ≥ L(t−1) ;
â← a(γ− 1) ;
ê←

�

y−Dâ
�

;
STOP ;

Algorithm 4: MDL-based dictionary learning via forward selection.
Input: Data Y
Output: (Â, D̂)
initialize p← 0; A(0)← ;; D(0)← ;; E(0)← Y; L(0)← L(E(0),A(0),D(0)) ;
repeat

d̃← u1,UΣVᵀ = E(p) // Initial value of new atom is the left-eigenvector associated to the largest singular value of
E(t).

D0← [D(p) | d̃ ] // Initial dictionary for optimization below.
(A(p+ 1),D(p+ 1))← arg min(A,D)∈M (p+1) L(E,A,D) // Optimize dict. via Algorithm 5
p← p+ 1 ;
L(p)← L(E(p),A(p),D(p)) ;

until L(p)≥ L(p− 1) ;
Â← A(p− 1); D̂← D(p− 1);

then invoking Algorithm 5, which is discussed in depth in the next subsection.

A backward-selection algorithm was also developed which first learns the model for

M (pmax) via (5), where pmax is a given maximum dictionary size, and then prunes the less

frequently used atoms until no further decrease in codelength is observed. This algorithm

allows us to provide especially-constructed initial dictionaries for Algorithm (5), e.g., an

(overcomplete) DCT frame, which can be critical for finding good local minima of the non-

convex problem (D.16). We do this for example to learn a dictionary for the whole class of

natural images, see Section 7.
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Algorithm 5: MDL-based dictionary learning for a given size p
Input: Data Y, initial dictionary D0, multiplier λ, η
Output: Local-optimum (Â, D̂)
initialize D(0) = D0, t = 1 ;
repeat

for j = 1, . . . , n do
a(t)j ← arg minA L(e,a,D(t−1)) ;

end

Update plug-in parameters: θe ,
¦

(θ k
a ,ρk

a), k = 1, . . . , p
©

,θd ;

D(t)← arg minD L(E,A,D) ;
t ← t + 1 ;

until








D(t)−D(t−1)









2







D(t)









2

≤ ε ;

6.1 Optimizing the dictionary for fixed p

For fixed p, and given an initial D, Algorithm 5 adapts the atoms of D to fit the train-

ing data Y. At the high level, our algorithm is very similar to the traditional approach

of alternate minimization over (A,D). However, there are a number of important dif-

ferences, namely: 1) The cost function minimized is now the cumulative codelength of

describing Y, L(E,A,D); 2) Minimizing over A is done sample by sample following Sec-

tion 5; 3) Since D needs to be described as well, it has an associated codelength (see

Section 4.3), resulting in regularized dictionary update, described below; 4) in a cross-

breed between Expectation-Maximization, and plug-in estimation, we estimate the model

parameters for the current iterate (E(t),A(t),D(t)), from the accumulated statistics of previ-

ous iterates
¦

(E(t
′)A(t

′),D(t
′)), t ′ = 1, . . . , t − 1

©

. At the end of the learning process, these

parameters are “saved” as part of the learned model and can be used for modeling future

data along with D.

At the t-th iteration of the alternate minimization between D and A, with A(t) just

computed and kept fixed, the dictionary step consists of solving the sub-problem

D(t) = arg min
D∈Rm×p

L(Y,A(t),D) = arg min
D∈Rm×p

L(Y|A(t),D) + L(D).
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According to Section 4.3, we have L(D) = 1
θ
(t)
d

∑p
k=1





Wdk







1, where

θ
(t)
d =

1

mp

p
∑

k=1

m
∑

i=1

|d(t−1)
ik |

is the Laplacian MLE of θd based on D(t−1). Correspondingly, the data fitting term, via (D.9)

and disregarding the constant terms, is given by L(Y|A(t),D) = L(Y − DA(t)|θ (t)e ,σ2
e ) =

∑n
j=1

∑m
i=1− log LG(yi j − (DA(t))i j;θ

(t)
e ,σ2

e ), where θ (t)e is the estimator of θe given E =

Y−D(t−1)A(t) (see Section 4.4) and σ2
e is assumed known. The problem can now be written

as,

D(t) = arg min
D

L(Y−DA(t)|θ (t)e ,σ2
e ) + θ

(t)
d

p
∑

k=1





Wdk







1 . (D.17)

For general W, the optimization of (D.17) is challenging since none of the above terms are

separable, in particular, the non-differentiable `1 term. However, since W is easily invertible

(as described in Section 4.3, it is lower triangular with 1’s in the diagonal), we can perform

a change of variables and solve the equivalent problem in the prediction residual matrix

U=WD instead,

Û= arg min
U

L(Y−W−1UA(t)|θ (t)e ,σ2
e ) + θ

(t)
d

p
∑

k=1





Uk







1 . (D.18)

Since the regularization term in (D.18) is decoupled in the elements of U, and L(Y −

W−1UA|θ (t)e ,σ2
e ) is convex and differentiable in U (see Figure D.2(a)), (D.18) can be ef-

ficiently solved using the existing techniques for separable non-differentiable regulariza-

tion terms. In our case, we employ the backtracking variant of FISTA [23], focusing on an

efficient numerical evaluation of each step.
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7 Experimental results

7.1 Coding performance

The first experiment in this section assesses the ability of our coding scheme to actually

produce a compressed description of the data, in this case 8-bit gray-scale images. To this

end, a dictionary D was learned using the backward-selection algorithm, for the training

samples from the Pascal’06 image database, 7 converted to 8-bit gray-scale images and

decomposed into 8×8 patches. The initial dictionary was an overcomplete DCT frame with

p = 256. The resulting global dictionary D has p = 250 atoms. We then encoded the

testing samples from the same database, obtaining an average codelength of 4.1 bits per

pixel (bpp), confirming the ability of our model to produce a compressed description of the

data.

7.2 Learning performance

We compare the performance of the forward and backward dictionary learning algorithms

proposed in Section 6 by applying each method to learn a dictionary for the standard

“Boats” image (taken from the SIPI database, 8 along with “Lena,” “Barbara” and “Peppers”

used in the following experiments), and then measuring the final codelength and compu-

tation time. For the backward case, the initial dictionary is the global dictionary learned

in the previous experiment. As for the forward method, we also include a faster “partial

update” variant which performs a few (10) iterations of Algorithm 5 after adding a new

atom, instead of allowing it to converge. The results were a compression level of 5.13bpp

at a computational cost of 3900s for the backward method, 5.19bpp requiring 800s for the

convergent forward method, and 5.22bpp requiring 150s for the partial forward method

(the running times were measured for a parallelized C++ implementation running on an

7http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html
8http://sipi.usc.edu/database/database.php?volume=misc\&image=38\#top
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Athlon Phenom II X6 at 2.6GHz). In summary, all three methods reach similar, significant,

compression levels. Slightly better results are obtained with the backward method, at the

cost of a significant increase in computational time. On the other hand, the partial forward

variant is significantly faster than the other two, yielding similar codelengths.

7.3 Denoising of natural images

The task in this case is to estimate a clean image from an observed noisy version whose

pixels are corrupted by AWGN of known variance σ2
e . Here Y contains all (overlapping)

8×8 patches from the noisy image. The denoising algorithm proceeds in two stages. In

the first one, a dictionary D is learned from the noisy image patches Y. We use the

backward selection algorithm since it allows us to use the global dictionary as the start-

ing point, a common practice in this type of problems, [25, 27]. Secondly, the clean

patches are estimated as sparse combinations of atoms from D. In our case, the sec-

ond stage admits two variants. The first one is a rate-distortion (RD) procedure akin

to the traditional method used for example in [25], where each clean sample ŷ j is esti-

mated using a distortion-constrained formulation. In our case, we minimize the codelength

(or “rate”) of describing y j up to a prescribed distortion proportional to the noise level,

ŷ j = Dâ j , â j = argminu L(u) s.t.




y j −Du






2 ≤ Cσ2
N . Here we use C = 1.0. The second

variant, coined “post-thresholding” (PT) is more consistent with the learning phase, and is

truly parameter-free, since the estimation derives from the same codelength minimization

procedure used for learning the dictionary D. In this case we obtain an initial estimate

ỹ j = Dã j , ã j = argminu L(u) + L(y j|u). However, according to the model developed in

Section 4.2, the encoding residual ẽ = y j − ỹ j may contain a significant portion of clean

data due to modeling errors. We can then think of ẽ as clean data corrupted by noise of

variance σ2
e . To extract the clean portion, we solve another codelength-minimization sub-

problem, this time with a Gaussian prior for the error, and a Laplacian prior for the clean
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part, ē j = argminu
1
σ2

e





ẽ j − u






2 +
1
θ̂e
‖u‖1 , where θ̂e =

p

0.5max{0, var(ẽ j)−σ2
e }, follow-

ing Section 4.4. We then compute the final estimate as ŷ j = ỹ j + ē j . In either variant, the

model used for L(a) includes the Markovian dependency between the occurrence of each

atom in a patch and its previously-encoded neighbors, as described in Section 4.4.

Denoising performance is summarized in Figure D.6, along with a detail of the result for

σe = 10 for the “Boats” image in Figure D.6. In all cases, there is a 1 to 5 dB improvement

over the best MDL-based results in [15], thus showing the relevance of overcoming the

limitations in previous MDL applications to sparse coding. Both the RD and PT methods

yield results which are comparable to those of [25], which depend significantly on several

carefully tuned parameters.9 While the RD variant performs better than PT in terms of

PSNR, PT is faster and tends to produce less artifacts than RD, thus resulting in more

visually pleasant images than RD. This, which can be clearly seen in Figure D.6, occurs

in all other cases as well. Including the Markov dependency in L(a) produced an average

improvement of up to 0.2dB.

7.4 Texture mosaic segmentation

Here we are given c images with sample textures, and a target mosaic of textures,10 and

the task is to assign each pixel in the mosaic to one of the textures. Again, all images are

decomposed into overlapping patches. This time a different dictionary is learned for each

texture using patches from corresponding training images. In order to capture the texture

patterns, a patch width w = 16 was used. Then, each patch in the mosaic is encoded using

all available dictionaries, and its center pixel is assigned to the class which produced the

shortest description length for that patch.

This seemingly natural procedure results in a success rate of 77%, which is consistent

9To the best of our knowledge, these results, as well as those in [25], are among the best that can be
obtained for gray-scale images without using multi-scale and/or spatial aggregation of patches as in [39, 40].

10Taken from http://www.ux.uis.no/~tranden/.
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σe = 10 PT RD [15] [25]
lena 34.9 35.2 32.4 35.5
barbara 33.0 33.8 29.4 34.4
boat 33.1 33.2 30.5 33.6
peppers 34.1 34.4 32.2 34.3
σe = 20 PT RD [15] [25]
lena 32.0 32.2 29.4 32.4
barbara 29.7 30.6 25.7 30.8
boat 29.5 30.3 27.5 30.3
peppers 31.7 31.6 29.4 30.8

Figure D.6: Denoising results. Left table: denoising performance, in PSNR, of K-SVD [25], MDL de-
noising [15], and the Post-Thresholding (PT) and Rate-Distortion (RD) denoising variants. Images,
top row: clean “Boats”, noisy version, learned dictionary for this image (final p = 248), image re-
covered using RD. Images, bottom row: image reconstructed from the initial estimation ỹ j obtained
in the PT method, its residual, portion of residual that was added back, final PT estimation.

with the second picture of Figure D.7. The problem is that this procedure is inconsistent

with the learning formulation, because each dictionary is adapted to minimize the average

codelength of describing each patch in the respective texture. Therefore, good results can

only be expected if the decision is made for groups of patches simultaneously, that is, by

considering the cumulative codelength of a set of patches. We implement this by deciding

on each patch on the basis of comparing the average codelength obtained with each dictio-

nary for encoding that patch and all patches in a circular neighborhood with a radius of 20

pixels. The success rate in this case is 95.3%, which is comparable to the state-of-the art

for this type of problems (see for example [41], which learns sparse models for explicitly

maximizing the success rate). The Markovian model improved our results by 1%.

7.5 Low-rank matrix approximation

The low-rank matrix approximation family of problems (see [42] for a review) can be seen

as an extension to the problem of sparse coding where sparsity is substituted by matrix

rank. Concretely, the task is to recover a matrix A ∈ Rm×n from an incomplete and/or
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Figure D.7: Left to right: Texture mosaic, dictionaries learned for each class (note the automati-
cally learned different sizes), patch-wise codelength-based classification map –each shade of gray
corresponds to a texture class – (77.0% success rate), classification map obtained by averaging the
codelength over a neighborhood of patches (95.4% success rate).

corrupted observation Y, under the assumption that the rank of A, rank(A), is small. As

with sparse coding, rank(A) is relaxed using the `1 equivalent for matrix rank, which is

the nuclear norm, ‖A‖∗ :=
∑

i σi(A), where σi(A) is the i-th singular value of A. It has

been shown in [42] that, under certain assumptions on rank(A), the following estimation

function is able to recover A from a noisy observation Y, and with a significant fraction of

its coefficients arbitrarily corrupted,

Â= argmin
W
‖W‖∗+λ‖Y−W‖1 , λ= 1/

p

max{m, n}. (D.19)

A common proof of concept is to use this framework for robust background estimation

in camera surveillance video sequences [43], and we apply our proposed framework for

the same application.

To perform our MDL-based model selection within this formulation, we solve (D.19) for

increasing values of λ, obtaining a low-rank approximation to A, (A(λ),E(λ) = Y− A(λ)),

which we encode using the universal models described in Section 4. We modified the

algorithm described in [44] to allow for warm restarts, using the solution for the previous

λ as a starting point for the next λ for faster convergence.

Consistently with the `1 fitting term of (D.19), we encode the non-zero values of E(λ)

as a Laplacian sequence of unknown parameter. To exploit the potential sparsity in E(λ),
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the locations of the non-zero values are encoded, as in 4.1, using an enumerative two-parts

code for Bernoulli sequences of unknown parameter. To exploit low-rank in the encoding,

the matrix A(λ) is encoded via its reduced SVD decomposition A(λ) = U(λ)Σ(λ)V(λ)ᵀ.

For rank(A(λ)) = r, we have that U(λ) ∈ Rm×r are the left-eigenvectors, Σ ∈ Rr×r is the

diagonal matrix whose diagonal are the non-zero singular values of A(λ), and V(λ) ∈ Rr×n

are the right-eigenvectors of A(λ). Each column of U is encoded (in this video example)

as a smooth image via a causal bilinear predictor identical to the one used for predictive

coding of D in 4.3, using a Laplacian model for the prediction residuals. Each column of V is

encoded as a smooth one-dimensional sequence, using a zero order predictor (the predicted

value for the next coefficient is the previous coefficient value), with a Laplacian prior on

the prediction residuals. Finally, the values of Σ, which can be arbitrary, are quantized and

encoded using the universal code for integers [45].

The encoding method is very simple, with all unknown parameters encoded using a two-

parts code, and codelenghts for the discretized Laplacian pre-computed in look-up tables.

Quantization for this case is as follows: the codelength associated with the r non-zero

singular values is negligible, and we minimize unwanted distortion encoding them with

high precision (1e−16). As for the columns of U and V, they all have unit norm, so that the

average magnitude of their elements are close to
p

1/m and
p

1/n respectively. Based on

this, our algorithm encodes the data with δu =Q/
p

m as the precision for encoding U, and

δv = Q/
p

m for V, for several values of Q in (0,1), keeping the one producing the smallest

codelength. The MDL-based estimation algorithm then chooses the model for which the

codelength L(Y;λ) = L(U(λ)) + L(Σ(λ)) + L(V(λ)) is minimized.

As in [43], here we show results for two sequences taken from [46]: “Lobby” (Fig-

ure D.8(a)), and “ShoppingMall” (Figure D.8(b)). Full videos can be viewed at http:

//www.tc.umn.edu/~nacho/lowrank/.

In both cases, the recovered backgrounds are very accurate. In particular, for the Lobby
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(a) Results for “Lobby” sequence, featuring a room
with lights that are switched off and on. The rank
of the approximation for this case is rank = 10. The
moment where the lights are turned off is clearly seen
here as the “square pulse” in the middle of the first
two right-eigenvectors (bottom-right). Also note how
u2 (top-right) compensates for changes in shadows.

(b) Results for “ShoppingMall”, a fixed camera look-
ing at a crowded hall. In this case, the rank of the
approximation decomposition is rank = 7. Here, the
first left-eigenvector models the background, whereas
the rest tend to capture people that stood still for a
while. Here we see the “phantom” of two such per-
sons in the second left-eigenvector (top-right).

Figure D.8: Low-rank approximation results. Both figures show the first two left-eigenvectors as
2D images at the top, two sample frames from the approximation error sequences in the middle,
which should contain the people that were removed from the videos, and the curve L(λ) and the
right-eigenvalues, scaled by Σ (representing the “activity” of each left-eigenvector along time), at
the bottom.
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sequence, the selected model captures just the eigenvectors needed to recover the back-

ground along with its lighting changes, including corrections for local shadows, leaving out

only the people passing by.

8 Concluding remarks

We have presented an MDL-based sparse modeling framework, which automatically adapts

to the inherent complexity of the data at hand using codelength as a metric.

The framework features a sparse coding algorithm and automatic tuning of the sparsity

level on a per-sample basis, including a sequential collaborative variant which adapts the

model parameters as it processes new samples, and two dictionary learning variants which

learn the size of the dictionaries from the data. In all cases, the information-theoretic

formulation led to robust coding and learning formulations, including novel robust met-

rics for the fitting term (LG and MOEG), and robust `1-based dictionary regularization

term. This formulation also allowed us to easily incorporate more prior information into

the coding/learning process, such as Markovian spatial dependencies, by means of simple

modifications to the probability models used.

As a result, the framework can be applied out-of-the-box to very different applications,

from image denoising to low-rank matrix approximation, obtaining competitive results in

all the cases presented, with minimal interaction from the user.

9 Supplementary material

9.1 MDL-based sparse coding via convex relaxation

Here we present an alternative method for performing efficient sparse model selection in

the sparse coding problem of choosing the best a for a given data sample y from the nested
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Algorithm 6: COdelength-Minimizing COntinuation ALgorithm (COMICAL)
Input: Data sample y, dictionary D, ∆λ > 0; h> 0
Output: The sparse code for y, a
initialize λ=min{





Dᵀy






∞ , h} ;
initialize e(λ)← y; z(λ)← 0; γ← 0; a(λ)← 0; L0←+∞ ;
while λ≥ 0 do

repeat
λ← λ−∆λ ;
ã← argminu∈RpH (y−Du; h) +λ‖u‖1. z̃← supp(ã) ;

until z̃> γ ;
γ←

∑

z̃ ;
a(γ)[z̃c]← 0 ;

a(γ)[z̃]←
h

�

D[z̃]
�†

y
i

δa
;

e(γ)←
�

y−Da(γ)
�

δe
;

z(γ)← z̃ ; // Note: actual support may be smaller due to quantization.
L(γ)← L(y(γ),a(γ)) ;
if L(γ)< L0 then

L0← L(γ) ;
else

STOP ;
end

end

class of possible sparse codes based on a fixed dictionary D,

MD :=
p
⋃

γ=0

MD(γ), MD(γ) :=
�

a ∈ Rp : ‖a‖0 ≤ γ
	

.

This method, called COdelength-MInimizing Continuation ALgorithm (COMICAL), is de-

tailed in Algorithm 6. The idea is to estimate the best code a(γ) fromMD(γ) sequentially

for γ= 0, . . . , p by solving a convex approximation of the codelength function L(y,a) (here

D is ignored, as it is fixed). Disregarding quantization and constant terms, this has the

following form,

L(y,a) =− log p(e) + log
�

p

‖a‖0

�

+ ‖a‖0− log p(a[z])−‖a‖0 logδa, (D.20)
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where the second term corresponds to encoding the support z, the third term to encoding

the sign s, and the last two to encoding the non-zero values of a. To obtain an approximate

minimizer â of the non-convex codelength function (D.20) we proceed in two stages. First,

we obtain a sequence of candidate supports of increasing size {z(γ) : γ = 1, . . . , p} from

which we compute the candidate codes from each class M (γ), {a(γ) : γ = 1, . . . , p} by

finding the values of the non-zero coefficients, az(γ)(γ).

For the sub-problem of selecting the set of optimal supports, we replace all occurences

of the `0 pseudo-norm, including the term log
� p
‖a‖0

�

, by a convex approximation λ‖a‖1,

and approximate the ideal codelength function − log p(e) with the Huber loss function,

H (e; h) :=







1
2
e2 , |e|< h

h|e| − h2

2
, |e| ≥ h

,

which is a good simple approximation of the LG codelength function (see Figure D.9), and

− log p(a|z, s) with the `1 norm of a, which then collapses with the other two `1 norms

into λ‖a‖1. We extend the Huber loss function H (e; h) to vectors e ∈ Rm as H (e; h) :=
∑m

i=1H (ei; h). The resulting convex problem has the following form,

arg min
u∈Rp
H (y−Du; h) +λ‖u‖1 . (D.21)

In order to obtain a sequence of solutions a(γ) for increasing γ, we modulate the value

of the parameter λ from the value λmax that produces the solution a(0) = 0 (which is

easily obtained using the KKT conditions of the problem, see below) down to 0. The Huber

parameter h is kept fixed to a value of h = 5σe to avoid performing the search over a

two-dimensional parameter space. This value was chosen by inspecting the shape of the

LG codelength function and its best Huber approximation (see Figure D.9) for the range
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Figure D.9: Huber approximation of the LG codelength function. Here we show the `1 and `2
regions of the Huber loss function that better fits the LG codelength shown here. The regions are
delimited by the value of the Huber parameter h marked here as blue starred dots on the horizontal
axis.

of values of θe and σe typically observed (for example, from the output of the pursuit-

based COMPA algorithm described previously). Problem (D.21) is a minor variation of the

Lasso problem, that we solve with a minor variation of Coordinate Descent (CD) [22]. The

fact that the Huber function H (·; h) is smooth everywhere is crucial here to guarantee

convergence of CD to the global optimum of (D.21) for each value of λ (see [47]). In fact,

the only difference between CD and our algorithm is the thresholding function induced by

the Huber-`1 scalar function,

SH (u; h,λ) := argminH (u; h) +λ|u|. (D.22)
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It turns out that the solution to this problem coincides with the soft-thresholding opera-

tor [21] if h> λ, and otherwise is identically zero,

SH (u; h,λ) =







max {0, |u| −λ} , λ < h

0 , otherwise

Therefore, the only difference between CD and our algorithm is the value of λmax, which is

λ
Huber−`1
max =min

n

λ
`2−`1
max , h

o

.

The efficiency of our algorithm derives from the use of a continuation strategy, meaning

that the problem is solved repeatedly for small decrements of λ, and the solution of the

problem for the previous value of λ is used as a starting point (a warm restart) for solving

the next problem. For sufficiently small decrements of λ, two consecutive solutions are very

close in space, so that convergence can be achieved very quickly (even only one iteration of

CD may be enough).

Given the estimated support z(γ), the non-zero values of a(γ), a[z(γ)](γ) are computed

as the quantized orthogonal projection of the data vector y onto the active dictionary atoms

D[z(γ)],

a[z(γ)](γ) =
�

�

Dᵀ[z]D[z]
�−1

Dᵀ[z]y
�

δa

. (D.23)

Note that, in principle, given the fixed support z(γ), finding a local minimum (or global,

if − log p(e) and − logp(a[z]) are convex), is now possible. However, we avoid this as per-

forming such full optimization for each γ = 0, . . . , p is computationally too expensive, and

the potential codelength gains are small, as it is L(z) that usually dominates the description

length of L(a) = L(z) + L(s) + L(a[z]) (see Figure D.5).
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9.2 `1 regularized dictionary update

Algorithm 7 details the FISTA-based dictionary update algorithm that we propose for solv-

ing the `1-regularized dictionary update problem. There, we define L′(E ; θe,σ
2
e ) as the

gradient of L(E ; θe,σ
2
e ) with respect to E, that is,

¦

L′(E ; θe,σ
2
e )
©

i j
= L′(ei j ; θe,σ

2
e ) (see

Figure D.2(f)).

Algorithm 7: Dictionary update (FISTA)

Input: α0 > 0; 0< β < 1; D(0) ∈ Rm×p; Parameters from previous iteration: θd , θe,
σ2

e
Output: Dictionary D
Initialize U(0)←WD(0); t ← 1; V(t)← U(0); τ(t)← 1;
while α > αmin do

// Backtracking (find valid α):
α← α0 ;
Z←Sθe

�

V(t)− (P−1)ᵀL′
�

Y− P−1V(t)A ; θe,σ
2
e

�

Aᵀ
�

;
F ← L(Y− P−1ZA ; θe,σ

2
e ) + θe

∑p
k=1





Zk







1 ;
Gα← L(Y− P−1VA ; θe,σ

2
e )+< Z−V,∇f(V)>+α

2
‖Z−V‖2F + g(Z) ;

while α > αmin AND F > Gα do
α← αβ ;
Z←Sθe

�

V(t)−α(P−1)ᵀL′
�

Y− P−1V(t)A ; θe,σ
2
e

�

Aᵀ
�

;
F ← L(Y− P−1ZA ; θe,σ

2
e ) + θe

∑p
k=1





Zk







1 ;
Gα← L(Y− P−1VA ; θe,σ

2
e )+< Z−V,∇f(V)>+α

2
‖Z−V‖2F + g(Z) ;

end
U(k)← Z // Assign new iterate.
// Update auxiliary point.

τ(t+1)← 1+
p

1+4τ(t)

2
;

V(t+1)← U(t)+
�

τ(t)−1
τ(t+1)

�

�

U(t)−U(t−1)
�

;
t ← t + 1 ;

end
D̂←W−1U(t) ;
STOP ;

Practical speedup: although the `1-regularized model is statistically more accurate, it

also makes the dictionary update algorithm significantly slower than its traditional non-

regularized counterparts. To remedy this situation, we optionally perform a few iterations
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using a `2-regularized model instead,

D̂= arg min
D

1

2
‖Y−DA‖2F +

p
∑

k=1

σ2
d

2





Pdk







2
2 , (D.24)

which can be efficiently solved using block-coordinate descent in the dictionary atoms, each

atom dk updated via scaled projected gradient, which consists of the following steps,

i) u ←
1

(AAᵀ)kk +σ2
ddiagdiag(PᵀP)

(DA(t)((A(t))ᵀ)k − Y((A(t))ᵀ)k) + PᵀPd(t)k

ii) d(t+1)
k ←

1

min{1,‖u‖2}
u,

where A(t) is the matrix of current sparse coefficients, d(t)k is the current k-th atom, and

d(t+1)
k is the updated atom.
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E

Low-rank data modeling via the Minimum Description Length

principle

Ignacio Ramírez and Guillermo Sapiro

Department of Electrical and Computer Engineering, University of Minnesota

Robust low-rank matrix estimation is a topic of increasing interest, with
promising applications in a variety of fields, from computer vision to data min-
ing and recommender systems. Recent theoretical results establish the ability
of such data models to recover the true underlying low-rank matrix when a
large portion of the measured matrix is either missing or arbitrarily corrupted.
However, if low rank is not a hypothesis about the true nature of the data, but
a device for extracting regularity from it, no current guidelines exist for choos-
ing the rank of the estimated matrix. In this work we address this problem by
means of the Minimum Description Length (MDL) principle – a well established
information-theoretic approach to statistical inference – as a guideline for se-
lecting a model for the data at hand. We demonstrate the practical usefulness
of our formal approach with results for complex background extraction in video
sequences.

1 Introduction

The key to success in signal processing applications often depends on incorporating the

right prior information about the data into the processing algorithms. In matrix estimation,

low-rank is an all-time popular choice, with analysis tools such as Principal Component

Analysis (PCA) dominating the field. However, PCA estimation is known to be non-robust,
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and developing robust alternatives is an active research field (see [1] for a review on low-

rank matrix estimation). In this work, we focus on a recent robust variant of PCA, coined

RPCA [1], which assumes that the difference between the observed matrix Y, and the true

underlying data X, is a sparse matrix E whose non-zero entries are arbitrarily valued. It has

been shown in [1] that X (alternatively, E) can be recovered exactly by means of a convex

optimization problem involving the rank of Y and the `1 norm of E. The power of this ap-

proach has been recently demonstrated in a variety of applications, mainly computer vision

(see [2] and http://perception.csl.uiuc.edu/matrix-rank/applications.html for examples).

However, when used as a pure data modeling tool, with no assumed “true” underlying

signal, the rank of X in a PCA/RPCA decomposition is a parameter to be tuned in order to

achieve some desired goal. A typical case is model selection [3, Chapter 7], where one wants

to select the size of the model (in this case rank of the approximation) in order to strike an

optimal balance between the ability of the estimated model to generalize to new samples,

and its ability to adapt itself to the observed data (the classic overfitting/underfitting trade-

off in statistics). The main issue in model selection is how to formulate this balance as a

cost function.

In this work, we address this issue via the Minimum Description Length (MDL) princi-

ple [4, 5].1 MDL is a general methodology for assessing the ability of statistical models to

capture regularity from data. The MDL principle can be regarded as a practical implemen-

tation of the Occam’s razor principle, which states that, given two descriptions for a given

phenomenon, the shorter one is usually the best. In a nutshell, MDL equates “ability to

capture regularity” with “ability to compress” the data, using codelength or compressibility

as the metric for measuring candidate models.

The resulting framework provides a robust, parameter-free low-rank matrix selection

1While here we address the matrix formulation, the developed framework is applicable in general, including
to sparse models, and such general formulation will be reported in our extended version of this work.
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algorithm, capable of capturing relevant low-rank information in the data, as in video se-

quences from surveillance cameras in the illustrative application here reported. From a

theoretical standpoint, this brings a new, information theoretical perspective into the prob-

lem of low-rank matrix completion. Another important feature of an MDL-based framework

such as the one here presented is that new prior information can be naturally and easily

incorporated into the problem, and its effect can be assessed objectively in terms of the

different codelengths obtained.

2 Low-rank matrix estimation/approximation

Under the low-rank assumption, a matrix Y ∈ Rm×n can be written as Y = X+ E, where

rank(X)�min{m, n} and ‖E‖ � ‖Y‖, where ‖·‖ is some matrix norm. Classic PCA provides

the best rank-k approximation to Y under the assumption that E is a random matrix with

zero-mean IID Gaussian entries,

X̂= arg min
W
‖Y−W‖2 , s.t. rank(W)≤ k. (E.1)

However, PCA is known to be non-robust, meaning that the estimate X̂ can vary significantly

if only a few coefficients in E are modified. This work, providing an example of introducing

the MDL framework in this type of problems, focuses on a robust variant of PCA, RPCA,

introduced in [1]. RPCA estimates X via the following convex optimization problem,

X̂= argmin
W
‖Y−W‖1+λ‖W‖∗ , (E.2)

where ‖W‖∗ :=
∑

i σ(W)i is the nuclear norm of W. The rationale behind (E.2) is as

follows. First, the `1 fitting term allows for large errors to occur in the approximation. In

this sense, it is a robust alternative to the `2 norm used in PCA. The second term, λ‖W‖∗ , is



214

a convex approximation to the PCA constraint rank(W) ≤ k, merged into the cost function

via a Lagrange multiplier λ.

This formulation has been recently shown to be notoriously robust, in the sense that,

if a true low-rank matrix X exists, it can be recovered using (E.2) even when a significant

amount of coefficients in E are arbitrarily large [1]. This can be achieved by setting λ =

1/
p

max{m, n}, so that the procedure is parameter-free.

2.1 Low-rank approximation as dimensionality reduction

In many applications, the goal of low-rank approximation is not to find a “true” underlying

matrix X, but to perform what is known as “dimensionality reduction,” that is, to obtain a

succinct representation of Y in a lower dimensional subspace. A typical example is feature

selection for classification. In such cases, E is not necessarily a small measurement pertur-

bation, but a systematic, possibly large, error derived from the approximation process itself.

Thus, RPCA arises as an appealing alternative for low-rank approximation.

However, in the absence of a true underlying signal X (and deviation E), it is not clear

how to choose a value of λ that produces a good approximation of the given data Y for a

given application. A typical approach would involve some cross-validation step to select λ

to maximize the final results of the application (for example, minimize the error rate in a

classification problem).

The issue with cross-validation in this situation is that the best model is selected indi-

rectly in terms of the final results, which can depend in unexpected ways on later stages

in the data processing chain of the application (for example, on some post-processing of

the extracted features). Instead, we propose to select the best low-rank approximation

by means of a direct measure on the intrinsic ability of the resulting model to capture the

desired regularity from the data, this also providing a better understanding of the actual

structure of the data. To this end, we use the MDL principle, a general information-theoretic
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framework for model selection which provides means to define such a direct measure.

3 MDL-based low-rank model selection

Consider a family M of candidate models which can be used to describe a matrix Y

exactly (that is, losslessly) using some encoding procedure. Denote by L(Y|M) the de-

scription length, in bits, of Y under the description provided by a given model M ∈ M .

MDL will then select the model M̂ ∈ M for Y for which L(Y|M̂) is minimal, that is

M̂ = arg minM∈M L(Y|M). It is a standard practice in MDL to use the ideal Shannon code

for translating probabilities into codelengths. Under this scheme, a sample value y with

probability P(y) is assigned a code with length L(y) =− log P(y) (all logarithms are taken

on base 2). This is called an ideal code because it only specifies a codelength, not a specific

binary code, and because the codelengths produced can be fractional.

By means of the Shannon code assignment, encoding schemes L(·) can be defined natu-

rally in terms of probability models P(·). Therefore, the art of applying MDL lies in defining

appropriate probability assignments P(·), that exploit as much prior information as possible

about the data at hand, in order to maximize compressibility. In our case, there are two

main components to exploit. One is the low-rank nature of the approximation X, and the

other is that most of the entries in E will be small, or even zero (in which case E will be

sparse). Given a low-rank approximation X of Y, we describe Y as the pair (X,E), with E =

Y−X. Thus, our family of models is given byM = {(X,E) : Y= X+ E, rank(X)≤ rank(Y)}.

As E = Y− X, we indexM solely by X. With these definitions, the description codelength

of Y is given by L(Y|X) := L(X) + L(E). Now, to exploit the low rank of X, we describe it in

terms of its reduced SVD decomposition,

X= UΣVᵀ U ∈ Rm×k, Σ ∈ Rk×k, V ∈ Rk×n, (E.3)
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where k is the rank of X (the zero-eigenvalues and the respective left and right eigenvectors

are discarded in this description). We now have L(X) = L(U) + L(Σ) + L(V). Clearly, such

description will be short if rank(X) is significantly smaller than max{m, n}. We may also be

able to exploit further structure in U, Σ and V.

3.1 Encoding Σ

The diagonal of Σ is a non-increasing sequence of k positive values. However, no safe

assumption can be made about the magnitude of such values. For this scenario we propose

to use the universal prior for integers, a general scheme for encoding arbitrary positive

integers in an efficient way [6],

L( j) = log∗ j := log j+ log log j+ . . .+ log2.865, (E.4)

where the sum stops at the first non-positive summand, and log2.865 is added to satisfy

Kraft’s inequality (a requirement for the code to be uniquely decodable, see [7, Chapter 5]).

In order to apply (E.4), the diagonal of Σ, diag(Σ) is mapped to an integer sequence via

[1016diag(Σ)], where [·] denotes rounding to nearest integer (this is equivalent to quan-

tizing diag(Σ) with precision δΣ = 10−16).

3.2 Encoding U and V, general case

By virtue of the SVD algorithm, the columns of U and V have unit norm. Therefore, the most

general assumption we can make about U and V is that their columns lie on the respective

m-dimensional and n-dimensional unit spheres.

An efficient code for this case can be obtained by encoding each column of U and V in

the following manner. Let ui be a column of U (V is similarly encoded). Since ui is assumed

to be distributed uniformly over the m-dimensional unit sphere, the marginal cumulative
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density function of the first element u1i , F(u1i) = P(x ≤ u1i), corresponds to the proportion

of vectors u that lie on the unit spherical cap of height h= 1+ u1i (see Figure E.1(a)). This

proportion is given by F(u1i) = Am(1+u1i , 1)/Sm(1) where Am(h, r) and Sm(r) are the area

of spherical cap of height h and the total surface area of the m-dimensional sphere of radius

r respectively. These are given for the case 0≤ h≤ r (−1≤ u1i ≤ 0) by (see [8]),

Am(h, r) =
1

2
Sm(r)I((2hr − h2)/r2 ;

m− 1

2
,
1

2
)

Sm(r) = 2πm/2rm−1Γ−1(m/2),

where I(x ; a, b) =
∫ x

0
ta−1(1−t)b−1d t

B(a,b) , and B(a, b) =
∫ 1

0
ta−1(1− t)b−1d t are the regularized

incomplete Beta function and the Beta function of parameters a, b respectively, and Γ(·) is

the Gamma function. When r < h ≤ 2r we simply have Am(h, r) = 1− Am(2r − h, r). For

encoding u1i we have r = 1 so that

F(u1i) = (1/2)I((1− u2
1i; (m− 1)/2, 1/2),−1≤ u1i ≤ 0, (E.5)

since 2h− h2 = h(2 − h) = (1 + u1i)[2 − (1 + u1i)] = 1 − u2
1i . Finally, we compute the

Shannon codelength for u1i as

p(u1i) = F ′(u1i)
(a)
=
(1− u2

1i)
(m−3)/2(u2

1i)
−1/2

2 · B
�

m−1
2

, 1
2

� (−2u1i)

=−sgn(u1i)(1− u2
1i)
(m−3)/2[B((m− 1)/2, 1/2]−1

− log p(u1i) =−
m− 3

2
log(1− u2

1i) + log B((m− 1)/2, 1/2),

where in (a) we applied the Fundamental Theorem of Calculus to the definition of F(h)

and the chain rule for derivatives.

With u1i encoded, the vector (u2i , u3i , . . . , umi) is uniformly distributed on the surface of
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Figure E.1: (a) The spherical cap of radius r and height h (shown in gray). (b) Causal bilinear
prediction of smooth 2D images.

the (m−1)-dimensional sphere of radius r ′ = 1−|u1i|, and we can apply the same formula

to compute the probability of u2i , F(u2i) = Am−1(u2i + r ′, r ′)/Sm−1(r ′).

Finally, to encode the next column ui+1, we can exploit its orthogonality with respect to

the previous ones and encode it as a vector distributed uniformly over the m−i dimensional

sphere corresponding to the intersection of the unit sphere and the subspace perpendicular

to [u1, . . . ,ui].

In order to produce finite descriptions L(U) and L(V), both U and V also need to be

quantized. We choose the quantization steps for U and V adaptively, using as a starting

point the empirical standard deviation of a normalized vector, that is, δu =
p

1/m and

δv =
p

1/n respectively, and halving these values until no further decrease in the overall

codelength L(Y|X) is observed.

3.3 Encoding U predictively

If more prior information about U and V is available, it should be used as well. For example,

in the case of our example application, the columns of Y are consecutive frames of a video

surveillance camera. In this case, the columns of U represent “eigen-frames” of the video
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sequence, while V contains information about the evolution in time of those frames (this

is clearly observed in figures E.2 and E.3). Therefore, the columns of U can be assumed

to be piecewise smooth, just as normal static images are. To exploit this smoothness, we

apply a predictive coding to the columns of U. Concretely, to encode the i-th column

ui of U, we reshape it as an image B of the same size as the original frames in Y. We

then apply a causal bilinear predictor to produce an estimate of B, B̂ = {b̂ jl} where b̂ jl =

b jl − b j(l−1) − b( j−1)l + b( j−1)(l−1), assuming out-of-range pixels to be 0. The prediction

residual B̃= B−B̂ is then encoded in raster scan as sequence of Laplacian random variables

with unknown parameter θ i
u. This encoding procedure, common in predictive coding, is

depicted in Figure E.1(b).

Since the parameters
¦

θ i
u, i = 1, . . . , k

©

are unknown, we need to encode them as well

to produce a complete description of Y. In MDL, this is done using the so-called universal

encoding schemes, which can be regarded as a generalization of classical Shannon encoding

to the case of distributions with unknown parameters (see [5] for a review on the sub-

ject). In this work we adopt the so-called universal two-part codes, and apply it to encode

each column ui separately. Under this scheme, the unknown Laplacian parameter for θ i
u

is estimated via Maximum Likelihood, θ̂ i
u(ui), and quantized with precision 1/

p
m, thus

requiring L(θ̂ i
u) =

1
2

log m+ c1 bits. Given the quantized θ̂ i
u, ui is described using the dis-

cretized Laplacian distribution L(ui) =− log P(ui|θ̂ i
u(ui))+ c2. Here c1 and c2 are constants

which can be disregarded for optimization purposes. It was shown in [4] that the precision

1/
p

m asymptotically yields the shortest two-parts codelength.

3.4 Encoding V predictively

We also expect a significant redundancy in the time dimension, so that the columns of V

are also smooth functions of time (in this case, sample index j = 1, 2, . . . , n). In this case,

we apply a first order causal predictive model to the columns of V, by encoding them as
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sequences of prediction residuals, ṽi = (ṽi1, ṽi2, . . . , ṽin), with ṽi j = vi j− vi( j−1) for j > 1 and

ṽi1 = vi1. Each predicted column vi is encoded as a sequence of Laplacian random variables

with unknown parameter θ i
v . As with U, we use a two-parts code here to describe the data

and the unknown Laplacian parameters together. This time, since the length of the columns

is n, the codelength associated to each θ i
v is L(θ i

v) =
1
2

log n.

3.5 Encoding E

We exploit the (potential) sparsity of E by first describing the indexes of its non-zero loca-

tions using an efficient universal two-parts code for Bernoulli sequences known as Enumer-

ative Code [9], and then the non-zero values at those locations using a Laplacian model.

In the specific case of the experiments of Section 4, we encode each row of E separately.

Because each row of E corresponds to the pixel values at a fixed location across different

frames, we expect some of these locations to be better predicted than others (for example,

locations which are not occluded by people during the sequences), so that the variance

of the error (hence the Laplacian parameter) will vary significantly from row to row. As

before, the unknown parameters here are dealt with using a two-parts coding scheme.

3.6 Model selection algorithm

To obtain the family of models M corresponding to all possible low-rank approximations

of Y, we apply the RPCA decomposition (E.2) for a decreasing sequence of values of λ,

{λt : t = 1, 2, . . .} obtaining a corresponding sequence of decompositions {(Xt ,Et), t =

1, 2, . . .}. We obtain such sequence efficiently by solving (E.2) via a simple modification

of the Augmented Lagrangian-based (ALM) algorithm proposed in [10] to allow for warm

restarts, that is, where the initial ALM iterate for computing (Xt ,Et) is (Xt−1,Et−1). We

then select the pair (X t̂ ,E t̂), t̂ = argmint{L(Xt) + L(Et)}.
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4 Results and conclusion

In order to have a reference base, we repeated the experiments performed in [2] using our

algorithm. These experiments consist of frames from surveillance cameras which look at a

fixed point where people pass by. The idea is that, if frames are stacked as columns of Y,

the background can be well modeled as a low-rank component of Y (X), while the people

passing by appear as spurious “errors” (E). Clearly, if the background in all frames is the

same, it can be very well modeled as a rank-1 matrix where all the columns are equal.

However, lighting changes, shadows, and reflections, “raise” the rank of the background,

and the appropriate rank needed to model the background is no longer obvious.

Concretely, the experiments here described correspond to two sequences: “Lobby” and

“ShoppingMall,” whose corresponding results are summarized respectively in figures E.2

and E.3.2 At the top of both figures, the first two left-eigenvectors u1 and u2 of X are shown

as 2D images. The middle shows two sample frames of the error approximation. The L-vs-λ

curve is shown at the bottom-left (note that the best λ is not the one dictated by the theory

–0.007 for Lobby and 0.0035 for ShoppingMall– in [1]), and the scaled right-eigenvectors

σivi are shown on the bottom-right. In both cases, the resulting decomposition recovered

the low-rank structure correctly, including the background, its changes in illumination, and

the effect of shadows. It can be appreciated in the figures E.2-E.3 how such approximations

are naturally obtained as combinations of a few significant eigen-vectors, starting with the

average background, followed by other details.

4.1 Conclusion

In summary, we have presented an MDL-based framework for low-rank data approxima-

tion, which combines state-of-the-art algorithms for robust low-rank decomposition with

tools from information theory. This framework is able to capture the underlying low-rank

2The full videos can be viewed at http://www.tc.umn.edu/~nacho/.
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information on the experiments that we performed, out of the box, and without any hand

parameter tuning, thus constituting a promising competitive alternative for automatic data

analysis and feature extraction.
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Figure E.2: Results for the “Lobby” sequence (see text for a description of the above pictures and
graphs). The rank of the approximation decomposition for this case is k = 10. The moment where
the lights are turned off is clearly seen here as the “square pulse” in the middle of the first two
right-eigenvectors (bottom-right figure). Also note how u2 (top-right) compensates for changes in
shadows.
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Figure E.3: Results for the “ShoppingMall” sequence (see text for a description of the above pictures
and graphs). In this case, the rank of the approximation decomposition is k = 7. Here, the first
left-eigenvector models the background, whereas the rest tend to capture people that stood still
for a while (here we see the “phantom” of two such persons in the second left-eigenvector, top-left
picture).


