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Resumen

La epilepsia es una enfermedad neurológica que produce de forma espontánea repetidas alteraciones
del funcionamiento normal del cerebro. La epilepsia refractaria es un tipo de epilepsia que no puede
ser controlada con medicación. Dichos pacientes se ven imposibilitados de llevar una vida normal
por la elevada frecuencia de sus crisis. En particular, los pacientes pediátricos pueden tener conse-
cuencias severas sobre el neurodesarrollo. En estos casos se considera la ciruǵıa para remover las
células anormales causantes de las crisis. Esta técnica requiere una localización previa precisa de
la región del cerebro donde se origina las crisis.

Imágenes SPECT de la actividad cerebral, durante y entre crisis, son obtenidas utilizando radio-
trazadores que se acumulan y quedan fijos de forma proporcional al flujo sangúıneo cerebral local
al momento de su administración. La técnica más utilizada para detectar los focos epileptógenos
es umbralizar la diferencia de estas imágenes, corregistrada y normalizada. Este método ha de-
mostrado gran utilidad, pero presenta algunas desventajas: los resultados dependen fuertemente
del umbral elegido y presenta un alto número de falsas detecciones. Además, la elección del umbral
no tiene una sólida base estad́ıstica.

En esta tesis se presenta un modelo matemático de la formación de las imágenes de SPECT
y una caracterización estad́ıstica de las mismas. El modelo estad́ıstico y las hipótesis realizadas
son validadas por medio de tests estad́ısticos no paramétricos. Dicho modelo es luego aplicado al
problema de la localización de focos epileptógenos utilizando un método basado en la teoŕıa de
a-contrario y el mejoramiento de la calidad de las imágenes de SPECT a través de la remoción
de ruido en las mismas. Ambas técnicas, la propuesta para realizar la detección y la remoción de
ruido, son evaluadas en fantomas y casos reales y validadas por un médico experto con profundo
conocimiento de la historia cĺınica de los pacientes. Los resultados son prometedores: la localización
de los focos epileptógenos muestra mejores resultados que la técnica clásica de umbralización, y el
método de remoción de ruido parece mejorar globalmente la calidad de las imágenes de SPECT.



Abstract

Epilepsy is a brain disorder involving repeated, spontaneous episodes of disturbed brain func-
tion. Medically refractory epilepsy is a type of epilepsy that cannot be controlled with drugs. It
may have strong disturbing effects in the daily life of the patient and, in particular, poor neuro-
developmental outcomes in children. Brain surgery to remove the abnormal cells causing the
seizures may be considered in these situations. This technique requires a previous precise local-
ization of the brain zone causing the seizure.

Tracers that accumulate and remain fixed proportional to regional cerebral blood flow at the
time of injection are used to obtain spect images of the brain activity during and between seizures.
The most used technique for detecting the epileptogenic zone (EZ) is to threshold the co-registered
and normalized subtraction of these two images. This method has proven to be very useful but has
some disadvantages: results depends on the selected threshold and abundance of false detections.
Moreover, the choice of the threshold is not based on firm statistical basis.

In this thesis we present a mathematical model of the spect image formation process and a
statistical characterization of these images. The statistical image model and the associated as-
sumptions are validated by means of non-parametric statistical tests. Then, the model is applied
to the problem of EZ localization by means of an a-contrario based detection approach and the
improvement of spect image quality through denoising. Both detection and denoising are evalu-
ated on phantoms and real cases, and validated by an expert physician with deep knowledge on
the patients’ medical histories. Results are promising: the EZ localization approach shows better
performance than the classic thresholding technique, and the denoising method seems to globally
improve the quality of spect images.

It is important to remark that the mathematical model presented for spect images may be
used in a wide variety of applications, beyond the ones analyzed in this work, and may contribute
to improve the performance of techniques developed for et images.
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Chapter 1

Introduction

Single photon emission computed tomography (spect) is a diagnosis nuclear imaging tech-
nique that uses gamma-ray emissions to describe the spatial or spatial-temporal distribution of
physiological processes. A radioactive labeled tracer is administered to the patient and the emit-
ted gamma-photons are recorded to describe the properties of the physiological process of interest.
Among other applications, it is used for cancer detection, myocardial perfusion assessment, in-
fection or lymphoma detection, brain perfusion assessment. spect is an example of functional
imaging technique, as opposed to structural imaging techniques as mri, that principally depict the
patients anatomy. In routine nuclear medicine imaging, spect studies are performed using one or
more rotating gamma cameras, which acquire projections of the radionuclide distribution. Then,
image reconstruction is performed to obtain the tomographic study from projections. Two major
advantages of the spect over other functional medical imaging techniques, are its high sensitivity
-very low quantities of radiotracer material can be detected- and the fact of being non-invasive
-the concentration of radiotracer is estimated from counts of gamma rays emitted from within the
body. The counterpart is the exposition to radioactive material suffered by the patient, which
must be strictly controlled not to exceed safety limits. Another weakness of the spect study is its
low spatial resolution. It depends on the gamma camera characteristics but may vary from 8mm
to 4mm in the best case.

A particular application that makes use of spect studies is epilepsy. Epilepsy is a brain dis-
order involving repeated, spontaneous episodes of disturbed brain function that cause changes in
attention or behavior. A particular kind of epilepsy, called medically refractory epilepsy, cannot
be controlled with drugs. This type of epilepsy may have strong disturbing effects in the daily life
of the patient and, in particular, poor neuro-developmental outcomes in children. Brain surgery
to remove the abnormal cells causing the seizures may be a plausible action in these situations.
This technique requires a previous precise localization of the brain zone causing the seizure, i.e.
the epileptogenic zone (EZ). spect images are used for such purpose. The analysis of the studies
by the specialists can be done either by visual inspection only, or including an image processing
technique to assist the diagnosis.

Two principal methodologies based on functional neuroimaging techniques have been devel-
oped for EZ localization [1]. Both make use of at least two spect scans: the ictal scan, with
the radiotracer administered at the beginning of the seizure; and the inter-ictal scan, performed
in-between seizures. The scans are compared in order to find regions of high activity during the
seizure (ictal scan) that are not so active in basal state (inter-ictal scan).

The first methodology considers differences in the ictal/inter-ictal comparison which are checked
against a healthy normal database. Differences too far from normal behavior are considered EZ
candidates. To perform this comparison, spatial normalization is first used to wrap images to a
spect template [2]. This approach is problematic in that comparison against a normal database
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is not always valid. It cannot, for example, be used on children (there are no healthy normal
databases for children) or patients with anatomical lesions.

The second approach compares ictal and inter-ictal images of the same patient. Information
from other patients is not included. The most common method to localize the EZ is to detect
hyperperfusion regions on the ictal/inter-ictal subtraction image by thresholding. A global fixed
threshold is used, usually proportional to the standard deviation of the gray level values in the
subtraction image. Although the global thresholding technique has been evaluated and proven suc-
cessful in EZ localization [3], there are some disadvantages to this method. The global approach
is prone to corregistration, even when registration errors are low. Also high dependence on precise
masking is observed. Regarding the choice of the threshold value, despite being based on clinical
experience, it still lacks a solid statistical basis. An evident drawback is that this thresholding
technique will always detect regions above the threshold, even in the absence of EZ.

In [1], we proposed a method that aims to determine detection thresholds from ictal/inter-ictal
images of the same patient, in a more rigorous framework. We propose to use the a-contrario
theory, a statistical framework developed by Desolneaux et al. [4]. Good results are obtained,
with better defined activations in the EZ and less amount of false detections than the classical
thresholding technique. The proposed solution appears to be more robust to registration errors
than thresholding and less sensible to masking errors. The counterpart of the low number of false
detections is having no detections in cases of known EZ presence. The threshold defined by this
method turns out to be too restrictive in some cases. Despite being an statistically based approach,
the statistical image model proposed in [1] was too naive and turned out not to be fully consistent
with the underlying image formation physics. Because of this, we find the need to formalize the
data analysis methods, studying in depth the spect image formation process and the resulting
image characteristics. In this manner, a statistical model based on this study can be proposed for
the spect scans. Once the model is proposed, statistical detection methods can be developed and
applied to the EZ localization task. The EZ can be found as rare events in the spect image model.

In this work we present a study of the spect image formation process and develop an image
characterization model based on it. We first define the noise sources in the spect generation
process and then propose a mathematical model for the acquisition process. As will be presented
in Section 5.1, we conclude that the pixels in the spect sinograms can be modeled as indepen-
dent, Poisson distributed random variables. These variables are not identically distributed since
the spatially non-stationary nature of the images imposes different underlying Poisson parameters
for different pixels. The Poisson model for the detected photon counts is widely known and was
presented by Barrett et al. [5] and Harrison et al. [6] for Anger like cameras and by Marcovski [7]
for projection radiography. However, to the best of our knowledge, a detailed analysis of the
acquisition process and justification of the conditions of validity of the previous assumption was
not presented.

In Section 5.2, a statistical model is presented for the spect reconstructed images, which was
introduced by Barrett et. al in [8]. Under an assumption of low noise level with respect to the
mean reconstruction values, the spect image voxels are shown to follow a multivariate log-normal
distribution. Thus, returning to the previous idea, the EZ candidates may be found as outliers in
a log-normal model.

Including some extra precisions on the statistical image model, in Section 6.4 we present an
extension of the a-contrario EZ detection method [1], which takes into account the log-normal dis-
tribution of spect images. Moreover, a local-global combined measurement is introduced, which
covers different EZ sizes through a multi-scale approach. Inspired in the method proposed by
Burrus et al. [9], different nfa thresholds are computed for each scale. The detection performance
of the new approach is evaluated using both simulated and real scans. We found that it main-
tains the positive features of the previous a-contrario detection approach such as: robustness to
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alignment and masking problems, correct foci definition and low number of false positives. Some
improvements were found in the experimental evaluation. One of the most remarkable is the
greater sensitivity of the new method (a lower detectable activity threshold). The new threshold
is less restrictive than the previous one, allowing the reduction of false negatives, which is critical
in the EZ localization application. Moreover, the reduction on the false negatives is achieved
without a significant increase in false positives. The new threshold also allows the emergence of
new detections that belong to the seizure activation circuit. This aspect is remarkable since the
highly restrictive thresholding of the old a-contrario method gives clean images (low number of
false detections) which are not in accordance with reality. The perfusion circuits are complex and
several brain regions are active during the seizure.

Another application, where the spect statistical model has special utility, is the denoising
of the sinogram images. Denoising may be considered complementary to detection, since it may
assist the task of specialists improving the reconstructed image quality or even be used to improve
the detection result itself. Knowing the characteristics of image noise should help choosing a de-
noising method and therefore contributes to improve several algorithm performance on this type
of images. Based on the Poisson model proposed for the sinogram images, we applied a denoising
technique specially developed for Poisson noise. The algorithm, presented in [9], is an extension
of nl means to the case of images corrupted by Poisson noise. The denoising performance was
evaluated using phantoms and real scans. In both cases results are promising. In particular, for
real scans, the denoising method seems to improve edges definition and better distinguish small
adjacent structures. Moreover, it seems to increase the intensity in areas of low uptake, as the
temporal lobes, which is a positive aspect.

Outline

This manuscript is organized in two parts. Part I is focused on the spect images modelization,
while Part II is devoted to the application of this model to the EZ localization task in medically
refractory epilepsy. More precisely, Part I includes: a general description of the et techniques,
including the data acquisition process and reconstruction methods (Chapter 2); a general descrip-
tion of the spect technique, covering the basic physics acting on spect and the gamma camera
operation description (Chapter 3); a description on how to perform spect simulations (Chapter
4); the study of spect images formation process and characterization, including sinograms and
reconstructed image model (Chapter 5). In Part II we present the new a-contrario EZ detec-
tion method (Chapter 6) and the denoising techniques (Chapter 7). In both chapters, results on
phantom and real patients are presented.
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Chapter 2

Emission Tomography

This chapter presents a general approach to emission tomography. In Section 2.1, we start
describing the et nuclear imaging technique, its fundamental aspects and variants. Next, in
Section 2.2, we give a block diagram describing the stages that compose an et study, with a brief
description of each of them. Section 2.3 is devoted to describing the data acquisition stage in
more detail, describing the planar projections acquisition by means of a gamma camera. Finally,
in Section 2.4, we present the problem of image reconstruction and the description of two of the
most widely used image reconstruction techniques: fbp and ml-em, the latter with its variant
osem.

2.1. What is emission tomography?

Emission tomography (et) is a subset of the nuclear medicine techniques, which use radioac-
tive materials to image characteristics of the body’s physiology. It comprises two main techniques:
single-photon emission computed tomography (spect) and positron emission tomography (pet).
et images can represent the spatial distribution of various physiological processes, like glucose
metabolism, blood perfusion, receptors concentration, etc. For this reason these techniques are
highly used, both to diagnose and assess the response to therapy, of a wide variety of diseases.
Cancer, cardiac and neurological disorders (e.g. atherosclerosis, Alzheimer, epilepsy), psychiatric
illnesses, are some examples of them. Table 2.1 [10] presents a brief summary of the principal ap-
plications of both, pet and spect. et is an example of functional imaging techniques, as opposed
to structural imaging techniques (e.g. mri) that principally depict the patients anatomy. Figure
2.1 shows a comparative example of both of these techniques.

et is founded on a major principle known as the tracer principle, proposed in the early 1900s by
the Hungarian radio-chemist George de Hevesy. This principle states that radioactive compounds
participate of physiological processes in the same way as non-radioactive materials. As radioactive
compounds can be detected by means of their emission of gamma rays, they can be used to depict
the flow and distribution of several substances on the body. The use of radioactive materials as a
representative tracer of non-radioactive substances is the basis of the et techniques. These materi-
als are called radiopharmaceuticals or radiotracers and can be created to trace a wide variety
of substances. They consist of two components: the tracer compound, e.g. fluorodeoxyglucose
(FDG), that interacts with the body, and the radioactive label, e.g. 18F, that allows the imaging
through the radioactive emission. Radiotracers must present certain characteristics, among them:
to be detectable by an observer, not to perturb the studied system when introduced and to have
indistinguishable properties from those of the studied substance. Two major advantages of et

techniques over other functional medical imaging techniques, are its high sensitivity -very little
quantities of radiotracer material can be detected- and the fact of being non-invasive -the con-
centration of radiotracer is estimated from counts of gamma rays emitted from within the body.
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Figure 2.1: Left: spect image. Right: mri image. Note the difference between the anatomical detail
found in the mri study and the much more diffuse nature of the functional image. Images
provided by the Center of Nuclear Medicine of Hospital de Cĺınicas, Facultad de Medicina,
Universidad de la República, Uruguay.

Radiotracer Application

spect

67Ga citrate Infection or lymphoma detection
111In capromab pentetide Prostate cancer detection
201Tl TlCl Myocardial perfusion or viability assessment
99mTc TlCl Brain lymphoma detection
99mTc sestamibi or tetrofosmin Myocardial perfusion or viability assessment
99mTc MDP Metastases or fracture detection
99mTc HMPAO Brain perfusion assessment
99mTc RBCs Liver hemangioma detection
99mTc sulfur colloid Liver/spleen assessment, lymphoscintigraphy
99mTc sestamibi or tetrofosmin Parathyroid localization

pet

18F FDG

Characterization, diagnosis, staging, and

restaging of many forms of cancer

Solitary pulmonary nodule assessment

Epilepsy (refractory seizures)

Myocardial perfusion or viability assessment
82Rb RbCl Myocardial perfusion or viability assessment

Table 2.1: Clinical applications of spect and pet and their corresponding radiotracers. From [10].

The counterpart is the exposition to radioactive material suffered by the patient, which must be
strictly controlled not to exceed safety limits.

2.2. Stages of an ET study

Figure 2.2 shows a pipeline of the et study representing the stages involved in the process. The
first step is the production of the radiotracer, which depends on the particular application, since
the radioactive material will be used for imaging a particular organ or disease. Radioactive labels
can be classified into two broad groups: positron emitters, used in pet, and single-photon emitters,
used in spect. Some of the most commonly used positron emitters are: 18F, 82Rb, 11C and 15O.
And for single-photon emitters we have: 99mTc, 201Tl, 123I, 131I. Their radioactive half-life (t1/2)
is listed in Table 2.2 [10]. The half-life is the average time in which the nuclei of half of a given
population of atoms will undergo radioactive decay. Next, the radiotracer is administered to the
patient, by injection or inhalation, the first being the most frequent one. The quality of the image
increases with the dose of radiotracer. However, safety limits on radiation exposure of internal
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Figure 2.2: et study pipeline representing the different stages that make up the process. Based on [10].

organs limit this dose.

The next step is the data acquisition by means of a gamma camera. It takes place with the
patient lying still on a bed surrounded or revolved by the camera. The gamma camera detects
and records the gamma-rays emanating from the body, caused by the radioactive decays of the
radioactive isotope used to label the radiotracer. For example, more gamma-rays are emitted from
a tumor than from the surrounding tissues if it has higher glucose uptake and is being imaged
with 18F-fluorodeoxyglucose (18F-FDG). The time period between the radiotracer administration
and the data acquisition varies depending on the application. It can go from some minutes to
some hours or days. As will be explained in detail in Sections 2.3 and 2.4, the acquired data are
projections of the volume of interest that are used to estimate the desired tomographic images
through a process called tomographic image reconstruction. Tomographic images can be either 2D
slices or a 3D image of the volume of interest. There exist different reconstruction techniques. The
conventional method is called filtered backprojection (fbp). In recent years, more sophisticated
techniques, including iterative statistical estimation procedures, have been developed. Maximum-
likelihood expectation maximization (ml-em), and its variation, ordered-subsets ml-em (osem),
are examples of the most commonly used image reconstruction techniques.

The last step of the process is the image analysis by the physicians or medical staff. It tradition-
ally consisted of visual inspection and evaluation of the images, but in recent years, computerized
analysis has been greatly developed and plays a key role providing supplementary information to
the expert.

2.3. ET data acquisition

In the present section we present the basic ideas of planar projection acquisition. The approach
is set for spect acquisition, since it is the case of interest of this work. However, the pet case is
analogous.
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Isotope Half-life (t1/2)

18F 110 min
82Rb 1.25 min
11C 20.4 min
15O 124 s
99mTc 6.02 h
201Tl 73.1 h
123I 13.2 h
131I 8.02 days

Table 2.2: Half-life of some commonly used radioisotopes. From [10].

In et, data acquisition is done in the form of planar projections by means of a gamma camera.
An ideal gamma camera detector can be modeled as a 2D surface, which records the impacting
photons. More precisely, for a given detector position, an ideal gamma camera records all photons
hitting the detector in that position coming in normal direction to the detector. The camera moves
around the object in order to capture photons coming in different directions and thus obtaining
different object views (see Figure 2.3). In Section 3.3, we present a description of the gamma
camera operation, which will make clear how acquisition is achieved in practice.

Figure 2.3: et data acquisition. Photons are emitted in all directions. The camera rotates around the
volume capturing photons arriving in normal direction from different perspectives.

We introduce some notation in order to formalize these ideas. We will consider two reference
frames. The first one is attached to the volume of interest, described by coordinates (x, y, z). The
second one is rotative, described by coordinates (xr, yr) with the rotation angle θ, verifying

[
x
y

]

=

[
cos θ − sin θ
sin θ cos θ

] [
xr

yr

]

.

The second frame of reference can be thought of as attached to the gamma camera, allowed
to move around the patient in order to view it from different perspectives. See Figure 2.4 for an
illustration of this. Finally, we define function V (x, y, z), representing the radiotracer distribution
in the volume of interest. For simplicity, we will consider the 1D projection corresponding to a
given z = z0. The 2D projection is obtained with the same procedure repeated for all z positions.
This can be thought of as considering only one slice of the volume, the one corresponding to
z = z0. The procedure is then extended to all the slices that make up the volume.
The 1D projection p(xr, θ, z = z0) at a given perspective or angle θ, is the parallel projection of
V (x, y, z = z0) along yr, when viewed at angle θ, i.e.

9



Figure 2.4: et data acquisition. One slice of the volume of interest, V (x, y, z = z0), is integrated along
direction yr, for all xr and for a given projection angle θ. The obtained 1D projection is
p(zr, θ, z = z0). The same procedure is repeated for all angles and all slices to scan the
complete volume.

p(xr, θ, z = z0) =

∫ +∞

−∞

V (x, y, z = z0)dyr. (2.1)

For a given θ, the projection p(xr, θ, z = z0) represents, as a function of position xr, the inte-
gral of the radiotracer distribution function V (x, y, z = z0) along each normal direction yr. The
set of all projections, for 0 ≤ θ < 2π, as a 2D function of xr and θ is named sinogram. This
is because one fixed point (x0, y0, z0), describes a sinusoid xr = x0 cos θ + y0 sin θ in the (xr, θ)
plane. A sinogram for a general object is the superposition of the sinusoids for all the points in
the object. Figure 2.5 shows an example of a slice and its corresponding sinogram. Note the two
sinusoids described by the bright sources.

Although this can be considered a kind of 3D imaging (repeating the procedure for each slice),
there also exist the fully 3D imaging which we will not describe in detail. For a description of
fully 3D imaging we refer the reader to [11]. Tomographic images (2D slices or 3D volume images)
are then obtained from these projections. A tomographic pixel, or voxel, represents a measur-
able parameter at one point in space. On the contrary, a projection pixel represents the result
of the integration of that parameter along a line-shaped volume through the object of interest.
The estimation of tomographic images from projections is called tomographic reconstruction. The
tomographic image reconstruction problem can be formally stated as, given p(xr, θ, z = z0), for
all xr and θ, which is the original function V (x, y, z = z0)? In the presence of statistical noise,
the exact solution to this problem is not possible. Various methods have been proposed in order
to tackle this problem.

On the other hand, an exact solution can be found for the noise-free case. The most commonly
used reconstruction method in that case is called filtered backprojection (fbp). Despite having
several disadvantages (e.g. it does not consider the Poisson nature of photon emission neither the
acquisition process non-idealities) the fbp method has been widely applied to image reconstruction
in clinical imaging. The main reason is its simplicity, leading to an easy implementation and low
processing times. In some proposals [12], the fbp reconstruction is combined with low-pass filtering
techniques (e.g. Butterworth filters) in order to reduce noise and improve the reconstructed image
quality. Obviously, this has the counterpart of the increased blur, caused by the high frequencies
attenuation. In Section 2.4 we will present some of the most widely used image reconstruction
techniques.
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Figure 2.5: Left: Slice from the volume of interest. Right: Corresponding sinogram. Notice the two
sinusoids described in the (xr, θ) plane by each of the bright circular sources. Picture from [10].

2.4. Reconstruction methods

The image reconstruction problem can be stated as follows: given the set of projections
p(xr, θ, z), find the original distribution function V (x, y, z). This reconstruction can be performed
independently for each slice, in that case the problem would be to find V (x, y, z = z0), given the
projections p(xr, θ, z = z0), for each slice; or fully 3D, including all the available information to
reconstruct the whole volume V (x, y, z). In the present work we will only consider the former
approach. Reconstruction methods can be classified into two broad classes: analytic and iterative
methods. Analytic methods neglect real physical factors, affecting the acquisition process, in an
effort to obtain explicit inversion formulas for the reconstruction process. They usually provide
solutions which are simple to compute and interpret. The fbp method is an example of this tech-
niques. On the contrary, iterative methods allow to include various realistic factors of the image
acquisition process. They are mostly statistical based approaches and obtain, in general, better
quality results. The counterpart is that they are computationally expensive and more difficult to
interpret. In the following we describe two of the most commonly used reconstruction methods:
fbp and ml-em.

2.4.1. Analytic methods: FBP

The best known example of analytic reconstruction is fbp. Most conventional approaches to
image reconstruction are based on this method. fbp is a mathematical technique which assumes
an idealized form of the et images. It models the number of photons traveling in a given direction
as the integral line of the tracer distribution along that direction, i.e. the parallel projection intro-
duced in equation (2.1). It ignores effects such as the Poisson nature of emissions, scatter noise,
the blur introduced by the camera non-ideal response. In spite of this, reasonable results can be
obtained through fbp. In fact, it has been widely used in clinical applications, largely because of
its computational simplicity.

In fbp, the sinogram is turned into a tomographic image by means of a method called back-
projection. Backprojection consists in smearing projection data into the object region along the
direction θ in which it was measured. Because the knowledge of where the values came from
was lost in the integration with respect to yr, the best we can do is assign the constant value
p(xr, θ, z = z0) along yr for each xr, with given θ and z0 values. Figure 2.6 illustrates the back-
projection process for a given direction of a slice image. The same procedure is repeated for all
directions θ and the results are added together. For a reasonable number of projection angles, this
gives a good interpretation of the original object. Figure 2.7 shows the fbp reconstruction, of the
object presented in Figure 2.5, for different number of projection angles. It can be shown [11],
that the backprojection method introduces blur in the reconstructed image, with a point-spread
function given by 1/r, with r =

√

x2 + y2. Thus, the fbp method includes a filtering stage that
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cancels this blurring effect. For this purpose, the projections are pre-processed with a ramp filter
before backprojection.

The fbp method is originally developed for the noise-free case. However, it is also applied
in the presence of noise, including a smoothing step either applied to the projections (before
backprojection) or to the reconstructed 2D image (after backprojection).

Figure 2.6: Representation of the backprojection process. Left: Parallel projection p(xr, φ, z = 0) along
yr, for all xr and a given projection angle θ = φ. Right: The projection p(xr, φ, z = 0)
is backprojected. Since we have no information about the values at each yr coordinate, the
projection value for each xr is assigned along the yr direction. The same procedure is repeated
for each angle projection θ and the results are added together. Picture from [10].

Figure 2.7: fbp reconstruction of the object presented in Figure 2.6 for different number of projection
angles. Note how reconstruction quality increases with increasing number of projections.
Picture from [10].

2.4.2. Iterative methods: ML-EM

In 1982, A. Shepp and Y. Vardi proposed a method [13] for et reconstruction based on the idea
of maximizing the probability p(G|V ) of observing the actual detector counts G over all possible
emission densities V . Unlike previous methods, they give an accurate mathematical model for et,
which takes into account the Poisson nature of the emission process and the non-idealities of the
acquisition. Based on this model, they give a formula to compute the likelihood function p(G|V ),
and using special properties of the Poisson distribution they show that the log-likelihood function
l is a concave function of V . Given that l is a concave function of V , any local maxima has to be
the global. Thus, the authors propose an em based iterative scheme to find these maxima. This
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scheme gives a sequence of estimates V̂ 0, V̂ 1, . . . which converges to a global maximum estimator
V̂ ∞. Using an em approach to find the V estimate ensures that in each step, the new estimate
V̂ new is an improvement of the previous estimate V̂ old

l(V̂ new) ≥ l(V̂ old),

where the equality is reached if and only if l(V̂ old) = maxV l(V ). They show, by simulation, that
the proposed method decreases the statistical noise artifacts compared to conventional convolution
backprojection algorithms without introducing excessive smoothing. Despite having very good
quality reconstruction results, the method was not widely incorporated for clinical use due to its
slow convergence and high computational cost. It was not until 1994, when Hudson et al. [14]
proposed a variation of the method, that it became widely applied in clinical use until today. This
variation is known as osem, and accelerates the algorithm convergence by dividing input data
into subsets and applying an iteration of the original algorithm to each subset. In the following
we present a description of the original ml-em method and its variation osem.

ML-EM: General description

We start by introducing some notation. The unknown object is represented by a set of N
volume elements, each of which have constant value Vn, n = 1, . . . , N . This value represents the
average number of gamma-rays emitted from that volume element during the study period T
and is directly related to the radiotracer concentration in that volume element. The complete
volume is represented by the N × 1 column vector V , with Vn its n-th component.

Let a Poisson distributed number Vn, with expected value Vn, be generated independently in
each voxel n = 1, . . . , N . Vn represents the number of photons emitted in voxel n. In Section
3.2.4 we will show that these are reasonable hypotheses to model photon emission. The N × 1
column vector V, is the vector of components Vn, n = 1, . . . , N .

Sinogram data is represented by the M × 1 column vector G, with Gm its m-th component.
If we discretize de 2D detector surface in D detector elements, index m = 1, . . . ,M represents
all possible combinations of projection angle and detector element. Gm represents the number of
detected photons in data bin m. As will be shown in Section 5.1.1, for a given V , G components
can be modeled as independent Poisson random variables. Note that V is deterministic, while V
and G are Poisson distributed random variables.

Proposed model Suppose that each emission in voxel n is detected in detector m with
known probability

h(m,n) = P (detected in m|emitted in n),

so that h(m,n) ≥ 0. Thus, the probability of an emission in n being detected at all is given by

h(n) =

M∑

m=1

h(m,n) ≤ 1. (2.2)

Inequality in (2.2) shows that some photons might not be detected at all. The transition matrix
h(m,n) is assumed to be known exactly from the detector array geometry and other character-
istics of the system, described later in this Section. After each emission moves to some detector
element, or is missed and undetected, there is a known total number Gm of counts in each detector
m = 1, . . . ,M . The probability P (G|V ) of observing Gm, m = 1, . . . ,M is a function L(V ) of
the unknown rate V . Thus, we want to choose an estimate V̂ of V to maximize L(V ). Such
an estimate is called a maximum likelihood estimate of V given G. Finally, the target is to
propose an expression for L(V ) and find an estimate V̂ of V which maximizes L(V ) given G.
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Before proceeding with our pose of finding L(V ) and the maximum estimator V̂ ∞, it is im-
portant to notice that Shepp et al. show that, without loss of generality, it can be assumed that
equality in (2.2) holds. In that case, p(n,m) represents the conditional probability that a de-
tected photon, emitted in voxel n, is detected in detector m. This is equivalent to thinking of V
as the density of emitted counts which are detected. They make that assumption along their
analysis, which is consistent with a particular property of the algorithm (that we will see later):
the total number of detected counts is automatically preserved in the estimate V̂ , i.e.

N∑

n=1

V̂n =

M∑

m=1

Gm,

This assumption should simplify the task of finding h(m,n), since we do not need to include
information about those photons that go undetected.
It is also interesting to notice that the previous approach is an approximate mathematical model
of the physics involved. Some of its main assumptions are:

It exists an ambiguity in the discretization of boxes n and how h(m,n) is determined.

Scattered count errors should be eliminated in the physical measurement procedure by energy
discrimination of scattered counts. This proposal ignores these problems and assumes the
only source of difficulty is in the stochastic fluctuations (Poisson nature) of the counting
statistics G.

The likelihood function L(V ) The count in detector m, Gm, is made up from the contribution
of the independent emissions of voxels n = 1, . . . , N

Gm =

N∑

n=1

Gn,m, (2.3)

with Gn,m the emissions from voxel n detected in m. The variable Gn,m is a binomial selection
of the process Vn according to the probability h(m,n), thus according to the Binomial Selection
Theorem 5.1.1 (c.f. Section 5.1.2) we have

Gn,m = E(Gn,m) = Vnh(m,n). (2.4)

Now from (2.3) and (2.4) we can find the expected value of Gm as

Gm = E(Gm) =
N∑

n=1

E(Gn,m) =
N∑

n=1

Vnh(m,n). (2.5)

As mentioned before, the variables {Gm}M
m=1 are independent Poisson random variables. Thus,

the likelihood function L(V ) is given by

L(V ) = P (G = k|V ) =

M∏

m=1

e−Gm
Gkm

m

km!
,

where the dependence of V is given by Equation (2.5). Then, using properties of the Poisson
model, it can be shown [13] that the log-likelihood l(V ) = lnL(V ), is a concave function of V .

Maximizing l via Expectation Maximization Now we describe the iterative algorithm pro-
posed by Shepp et al., based on the em algorithm [15], to maximize the log-likelihood function l.
Using an em approach to find the V estimate ensures that in each step, the new estimate V̂ new is
an improvement of the previous estimate V̂ old

l(V̂ new) ≥ l(V̂ old),
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where the equality is reached if and only if l(V̂ old) = maxV l(V ). The concavity of l(V ) en-
sures that all maxima are global maxima, thus the em based iteration scheme gives a sequence
V̂ 0, V̂ 1, . . . which converges to a global maximum estimator V̂ ∞.

The first step to pose the em iterative scheme is to notice that if we believe that V̂ old is the
true V , we should estimate the unobserved number of emissions in voxel n, V̂n, as

V̂n = E(Vn|V̂ old,G),

this is the expectation step. Then, if V̂n is our estimate for the emission count in voxel n we
should, in order to be consistent, estimate the emission density Vn by V̂n (because V̂n is the

maximum likelihood estimate of Vn if indeed V̂n is the emission count in voxel n); this is the
maximization step. This gives the iterative scheme,

V̂ new
n = E(Vn|V̂ old,G) n = 1, . . . , N. (2.6)

It can be shown [13] that

E(Vn|V̂ old,G) = V̂ old
n

M∑

m=1

Gmh(m,n)
∑N

n′=1 V̂ old
n′ h(n′,m)

. (2.7)

Finally, the em iterative scheme to find the maximum likelihood estimator V̂ ∞ is:

Start with an initial guess V 0
n (usually uniform constant) satisfying V 0

n > 0, n = 1, . . . , N .
Then, at each iteration, V̂ new is updated according to

V̂ new
n = V̂ old

n

M∑

m=1

Gmh(m,n)
∑N

n′=1 V̂ old
n′ h(n′,m)

. (2.8)

Because of being an em algorithm, we have that if V̂ new
n 6= V̂ old

n , then l(V̂ new
n ) > l(V̂ old

n ), i.e.
the algorithm is monotone. The likelihood increases in each step of (2.8), unless V̂ new

n = V̂ old
n ,

in which case convergence is achieved. As mentioned before, it is interesting to notice that the
following equality is fullfilled [13]

N∑

n=1

V̂ new
n =

M∑

m=1

Gm and V̂ new
n ≥ 0.

This ensures that the total number of counts is automatically preserved in the estimate V̂ new and
V̂ new ≥ 0 at each stage. This condition is highly useful from the practical point of view but is not
verified by most of the reconstructions methods.

In the following we will present a more intuitive explanation for (2.8), analyzing the role of
each of the formula components. We divide (2.8) into four parts, each representing a stage of the
estimation process. The four steps complete one iteration, which is repeated until convergence.

Projection This step includes the passage from the 3D volume to the 2D projections (as those
obtained with the gamma camera). Here, the 3D volume is represented by the actual estimate V̂ old

of V and the projections are represented by the M × 1 vector G′. For each projection component
m, the projection estimate G′

m is given by

G′
m =

N∑

n=1

V̂ old
n h(m,n), (2.9)

where h(m,n) was previously defined and can be thought of as the sensitivity of detector m to
volume V . h(m,n) will be non-zero only for those voxels contributing to detector m.
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Correction Image The previously found projections are then compared to those actually ac-
quired by the gamma camera G. This is done dividing G by G′ in a pixel by pixel basis. This
way we obtain the correction images, represented by the M × 1 vector C, as

Cm =
Gm

G′
m

.

Backprojection The next step consists in backprojecting the correction images to obtain a
volume of scaling factors, which will then be used to adjust the current estimation of volume V .
The backprojection operation was previously presented in the description of the fbp algorithm.
We represent the volume of scaling factors by the N × 1 vector F .

Fn =
M∑

m=1

Cmh(m,n).

Volume Update Finally, the current estimation V̂ old is updated according to the volume cor-
rection factors given by F , yielding V̂ new. This is done multiplying volumes V̂ old and F in a voxel
by voxel basis.

V̂ new
n = V̂ old

n Fn.

Choice of h(m,n) values

The probabilities h(m,n), as components of a M × N matrix H, are known as projection
matrix. This is because each value p(n,m) represents the probability of a photon emitted in voxel
n being detected in detector m, i.e. h(m,n) can be thought of as the sensitivity of detector m to
voxel n. Equation (2.9), from the Projection stage of the ml-em algorithm, can be written in
matrix form as

G′ = HV̂ old,

which gives an explicit form of matrix H as a projection matrix of the 3D volume V̂ old to the 2D
projections G′. Now, how are the component values of H defined? Firstly, matrix H must reflect
the geometry of the gamma camera acquisition process, i.e. for each detector m, its value should be
close to that of the parallel projection of the volume of interest, defined by (2.1). The distance from
this ideal value will be given by the inclusion of different effects as the non-ideal camera response,
including collimator and detector non-idealities, and the attenuation effects. The collimator non
ideal response is usually modeled as a Gaussian blur, and includes effects as the septal penetration
and the non infinitesimal bore radio. Non-ideal detector response is also modeled as a Gaussian
blur and includes effects as the crystal quantum efficiency and the uncertainty on the photon
impact location. Attenuation is usually modeled as an exponential decay along the path normal
to the camera from a given detector element. All these non-ideal effects will be explained in more
detail in sections 3.2.5 and 3.3. The inclusion of matrix H in the reconstruction method allows
to consider various non-idealities of the acquisition process, which was not possible in the fbp

reconstruction. It is interesting to mention that Shepp et al. found [13] that the reconstruction
does not depend too critically on the choice of H assuming that it is reasonable.

2.4.3. OSEM

As mentioned before, despite leading to good quality reconstruction results, the ml-em algo-
rithm has a slow convergence rate. This motivated Hudson et al., to propose a variation of the
ml-em algorithm, called osem [14]. In the ml-em algorithm, all projection data G is used to
obtain the scaling factors F used to update the volume estimation. With osem, the projection
data is divided into subsets and an iteration of the ml-em algorithm is applied to each of the
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subsets in turn. The resulting reconstruction becomes the current estimate for use with the next
subset. Using subsets allows to calculate the scaling factors at a smaller cost. The convergence
rate is found to be increased by a factor proportional to the number of subsets.

Continuing with the notation introduced for ml-em, V̂ 0 is the initial estimate of V (e.g.
uniform) and V̂ j denotes the estimate of V after iteration j. Let S1, . . . , SQ denote the chosen
projection subsets. The osem algorithm can then be summarized as follows:

1. j = 0, V̂ j initialized verifying V̂ j > 0

2. Repeat until convergence of V̂ j

a) x1 = V̂ j , j = j + 1

b) For subsets q = 1, . . . , Q

1) Projection: Calculate

G′q
m =

N∑

n=1

xq
np(n,m),

for detector elements m in subset Sq.

Notice that the projection values G′q
m are calculated using the updated value of

xq, which includes the corrections introduced from the iterations on the subsets
S1, . . . , Sq−1.

2) Correction, backprojection and update: Calculate

xq+1
n = xq

n

∑

m∈Sq

Gmp(n,m)

G′q
m

/
∑

m∈Sq

p(n,m),

for voxels n = 1, . . . , N . This step updates the volume estimate xq+1 with the scale
factors obtained from detector elements m in subset Sq.

c) V̂ j = xq+1. The volume estimate V̂ j is updated as the estimate xq+1, obtained with
the corrections from all subsets in turns.

Each iteration of item (b) performs one iteration of the ml-em algorithm with the projection
data restricted to a subset of the complete data set G. This can also be written as the standard
ml-em algorithm with the projection matrix H substituted by the subset dependent projection
matrix Hq

[Hq]mn =

{
(H)mn q ∈ Sq

0 otherwise

An osem iteration is a single pass through all the subsets. With mutually exclusive and exhaustive
subsets, one osem iteration has a similar computation time to one standard ml-em iteration.
Despite this, osem usually achieves higher reconstruction quality for the same computation time.

Subsets definition and order

In spect, subsets correspond naturally to groups of projections, e.g. for 64 projection angles
in the range 0-360 degrees, we can choose 8 subsets of 8 projections each, uniformly distributed
along the acquisition angle range. This way, each subset has varied views of the volume of interest.
In that case, an osem sub-iteration will update the volume with the information obtained from
the detector elements corresponding to 8 of the 64 projections. Examples of subset elections are:

non-overlapping subsets With q subsets each of p detectors per projection, sets S1 = 1, . . . , p, S2 =
p + 1, . . . , 2p, . . . , Sq = (q − 1)p + 1, . . . , qp. Data used in each sub-iteration (with a given
subset) includes the given p detectors of all projections.
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cumulative subsets With S1 = 1, . . . , p, S2 = 1, . . . , 2p, . . . , Sq = 1, . . . , qp . Data used in each
sub-iteration includes the detectors defined for each subset, of all projections. The division
is cumulative since data already used in iteration (q − 1) is used again to compute the i-th
estimation.

standard ML-EM Employing a single subset including all projection data S1 = 1, . . . , pq.

The order in which subsets are processed is arbitrary. However, it may be advantageous to
introduce substantial new information, e.g. corresponding to the direction of greatest variability
in the volume, at first.

Some comments...

It was experimentally verified [14] that the execution speed is significantly increased for osem

compared to the standard ml-em. To achieve a reconstruction with a given maximum level of
error, the number of iterations is inversely proportional to the number of subsets. Also, it was
seen that as data is divided into more subsets, accelerated reduction of error is increased up to a
critical number of iterations, beyond which the noise artifacts of the ml-em solution are magnified
by osem. This well known noise artifact present in ml-em estimations, motivates its early stop-
ping before convergence is achieved. The same mean square error is obtainable with osem with
less iterations instead of stopping ml-em before convergence.

Except for noise-free data, osem converges to a non ml-em solution. Authors do not show
whether the algorithm converges or not. Instead they have empirically seen that osem follows
a cycle between different limiting images, depending on the last projection processed. For real
scale applications, these limiting images appear to be very similar, and for a moderate number
of subsets, indistinguishable. Computational experiences show that osem increases the likelihood
function at each iteration.

The most appropriate number of subsets depends on the attenuation density, the subset balance
and the level of noise in the projection data. With no attenuation, the use of individual projections
as subsets is inefficient. In that case, opposite projections provide estimates of the same regions and
should be included together in the same subset. Subset imbalance (variability in the probability
of a voxel emission being detected in different subsets) is greater for individual projections used
as subsets, thus balance is improved as the number of subsets is reduced. Also, with high levels
of statistical noise (low counts images) it is preferable to use smaller number of subsets.
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Chapter 3

SPECT

This chapter is devoted to present general aspects of the spect nuclear imaging technique.
In Section 3.1 we define what spect is, its applications and functioning modes. Section 3.2,
describes basic concepts related to the physical phenomena causing the radioactive decays and the
corresponding spect image formation process. A derivation of the well-known Poisson model to
describe the nuclear radioactive decay is also presented. Next, the interactions of gamma-photons
in matter are analyzed, since these are what really enable spect image formation. Section 3.3
describes the operation of a type of gamma cameras, known as Anger cameras, which are nowadays
widely used in clinical applications.

3.1. General principles

As introduced in Section 2.1, et comprises two main techniques: single-photon emission com-
puted tomography (spect) and positron emission tomography (pet). The difference between
spect and pet lies in the radioisotope used to label the tracer, and therefore in the applications
each of them encounters. See Table 2.1 for a list of the principal clinical applications of each tech-
nique. Radioisotopes used in spect studies are single-photon emitters, i.e. one gamma-photon
is emitted with each radioactive decay. For pet studies, the radioisotopes are positron emitters
which, upon decay, emit a positron. When this positron encounters an electron in the surrounding
medium, they mutually annihilate, resulting in the emission of two gamma-photons in opposite
directions. The difference between the number of photons emitted in each case, changes the logic
of detection and the hardware used to detect and localize them.

spect, as an example of et imaging, is a diagnosis nuclear imaging technique that uses gamma-
ray emissions to describe the spatial or spatial-temporal distribution of physiological processes.
A radioactive labeled tracer is administered to the patient and the emitted gamma-photons are
recorded to describe the properties of the physiological process of interest. In routine nuclear
medicine imaging, spect studies are performed using one or more rotating gamma cameras, which
acquire projections of the radionuclide distribution. Then, image reconstruction is performed to
obtain the tomographic study from projections.

spect studies can be performed in two modes: planar or tomographic. Planar imaging consists
in taking a projection of the radionuclide distribution, i.e. recording the distribution of interest
from a single view-point. Tomographic imaging implies a volumetric, or in slices, description of the
radiotracer distribution. The latter is obtained by the image reconstruction process from several
planar projections. Both modes are routinely used in nuclear medicine clinics.

The spect imaging technique can work in two modes, transmission or emission tomography.
Emission tomography shows the radiotracer distribution within the body, the emissions coming
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from inside the body are detected. Transmission tomography show the attenuation coefficient
distribution of the body, the emissions coming from an exterior source and traversing the body
are detected. The latter technique is typically an auxiliary step in emission spect, since it is used
to estimate the attenuation map of the body which is posteriorly used to correct the emission
study attenuation.
In the following we will analyze in detail the emission study since it is the principal application of
spect tomography and the subject of interest in the present work.

3.2. The physics of SPECT

Where do the gamma-ray emissions detected in spect emission tomography come from? In
the following paragraphs we will briefly summarize the main ideas related to nuclear emissions in
spect imaging in order to better understand the fundamentals of this nuclear imaging technique.
This section is based on [16].

3.2.1. Basic definitions: nuclear constituents, forces and the binding

energy

The atomic nucleus is made up of neutrons and protons, also known as nucleons. The proton
has one unit of fundamental electronic charge while the neutron is electronically neutral. The size
and shape of the nucleus depends on the number of neutrons (N) and protons (Z), their energy
states, and the angular momentum of the nucleus. The total number of nucleons in the nucleus
(A) is called the mass number. Atoms with identical chemical properties (same Z) but different
masses (different A) are called isotopes [16].

The three fundamental forces playing important roles within the nucleus are: the electromag-
netic, the strong and the weak nuclear forces. The forth fundamental force, the gravity, has
negligible effects within the nucleus. The electromagnetic interaction is the cause of repulsive
Coulomb forces among protons (since neutrons are electrically neutral they do not interact electri-
cally). These electrostatic repulsion forces are immense. The strong nuclear force is the responsible
of holding the nucleons together in spite of the electrostatic repulsive forces. Is an attractive in-
teraction between nucleons irrespective of their electronic charge. It is typically a factor of 100
times stronger than the electromagnetic interactions among the protons. The weak nuclear force
is the cause of certain types of radioactive decay (e.g. spontaneous nuclear β decay). Is typically
10−3 or 10−4 times weaker than the electromagnetic interaction.

The binding energy is the energy needed to overcome the forces holding the atomic constituents
together and separate it into its components: neutrons, protons and orbital electrons.

3.2.2. Nuclear energy states

The shell model is one of the most successful models describing the nucleons energy states
within a nucleus [16]. In this model nucleons move in orbits about on another and the types of
motion are quantized, i.e. described by discrete nuclear quantum parameters. This way, each
nucleon in the nucleus has a unique discrete set of allowed energy states, called energy levels.
Excited energy states, where some nucleons of the nucleus are in elevated energy states, usually
last extremely short times before decaying to a different lower energy state. Those states that last
relatively long time before decaying are called metastable states.
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3.2.3. Nuclear de-excitation and stability

In nature, systems tend to evolve from higher to lower energy levels. As mentioned before,
higher energy states usually exist for extremely short periods. These nuclear transitions from
higher to lower energy states have as a result the emission of electromagnetic radiation. This
is called radioactive decay and nuclides undergoing such transformations are called radionu-
clides. Besides, the initial unstable nucleus is called the parent and the final, more stable nucleus,
is termed the daughter. The energy resulting from the nucleons reconfiguration can be released in
two ways: in the form of gamma-ray photons or as internal conversion. Gamma-rays or gamma-
photons are electromagnetic radiation of high frequency. They are the most commonly used nuclear
emissions in nuclear imaging. Gamma-ray emission from short-lived nuclear de-excitation is not
of use for imaging since it lasts extremely short times. On the contrary, metastable radionuclides
are used because of their relatively long lifetimes. Those having lifetimes between a few minutes
and a few months can be used for in vivo imaging. For example, the 99mTc, is highly used in
spect imaging since its half-life is 6h, it delivers a relatively low radiation dose and it can be
used to label a great variety of imaging materials. Also its decay leads to the known 140 keV
gamma-photon emission, favorable to use with the gamma-ray cameras. On the other hand, in
the internal conversion, the nuclear energy is transferred directly to an atomic electron (usually
inner shell). These electrons are rapidly absorbed in tissue and so that not directly useful in
radioactive imaging.

3.2.4. Nuclear decay statistical model

In the following we present a derivation of the Poisson model to describe the radioactive nuclear
decay process.

Some basics

If an event occurs with probability p, the probability that it occurs n times out of N trials
follows the binomial law

P (n,N) =
N !

(N − n)!n!
pn(1 − p)N−n, (3.1)

with mean value Np and variance Np(1 − p).
If N is large and p is close to zero, so that (1 − p) is close to 1, the event is called a rare event
and the binomial distribution is closely approximated by the Poisson distribution

P (n,N) =
(Np)ne−Np

n!
(3.2)

with mean and variance equal to Np.

Back to the radioactive decay

The radioactive decay is a stochastic process, it is impossible to predict when a decay will
occur. However, given a large number of identical nuclei, the decay rate can be predicted. Given
N0 identical parent nuclei present at time t = 0, at time t = T , the number N most probably
surviving is

N = N0e
−λT ,

where λ is the radioactive decay constant, which verifies λ = ln(2)
t1/2

, with t1/2 the isotope radioactive

half-life. This exponential decay law is given by the fact that, on average, a constant fraction of
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radioactive atoms disappears in a given constant time interval. On the other hand, we can find
the number of expected decays as

D = N0 − N

= N0 − N0e
−λT

= N0(1 − e−λT ).

Thus, given N0 identical parent nuclei at time t = 0, the probability of any of them suffering
a decay in the time interval (0, T ) is

p =
D

N0
= 1 − e−λT . (3.3)

We can model the observation of the decaying nuclei during the time period (0, T ) as a binomial
process [17]. For this purpose, we repeat an experiment N0 times and find the probability that
n of them result successful. Each experiment concerns on whether a particular nucleus suffers a
decay or not. The probability of success is thus p, the probability of a nuclei suffering a decay in
the time interval (0, T ). Thus, equation 3.1 represents the probability of having n decays in (0, T ),
from N = N0 original parent nuclei. Now that we have modeled the observation of nuclei decay as
a binomial process, we ask the question whether the Poisson approximation is valid in this case.
The Poisson approximation of the binomial distribution is valid if p is close to zero and N0 is large
(so that N0p is finite). We analyze the first condition expanding the term e−λT in equation (3.3)

p = 1 −
(

1 − λT +
(λT )2

2
+ σ(λT )

)

.

Thus we have p ≃ 0 if λT << 1, so that second order and higher terms can be neglected in the
expansion of e−λT . This condition (λT << 1) is almost always satisfied in real et studies. For
example, for an spect study using 99mTc, the acquisition of each projection lasts about 25s so

that λT = ln(2)
6.02h25s = 0.001. Moreover, the second condition fundamentally implies n ≪ N0,

which is always verified in practice. Therefore the Poisson approximation (3.2) is a reasonable
approximation for the nuclear decay process. In the following we will show that n ≪ N0 is also
the condition for the probability of a nucleus decays in an infinitesimal interval t + dt to be inde-
pendent of n.

Let us consider a source with N0 parent nuclei at time t = 0. If n of them decay during the
time interval (0, T ), the probability that k of the remaining nuclei decay in time period (T, T +dt)
is

P (k, T + dt) =
(N1)!

(N1 − k)!k!
pk(1 − p)N1−k, (3.4)

where λ is the decay constant, N1 = N0 − n and p = (1− e−λdt) is the probability that a nucleus
decays in the time interval (T, T + dt)1. Here we model, as before, the observation of the decay
process, in period (T, T + dt), as a binomial process. The probability of success -probability of
decay- is p and the initial total number of parent nuclei is N1. Note that setting the initial number
of parent nuclei N1 as: N1 = N0 − n, includes the condition that n of the nuclei decay during the
interval (0, T ). Hence, from (3.4) and taking k = 1, we can find P (1, T + dt), the probability of

1In order to simplify notation, and considering that it should always be clear from context, we do not make
explicit the initial time instant in the probability expressions, i.e. P (n, T + dt) = P (n, (T, T + dt)).
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having 1 decay in (T, T + dt) after n previous decays in (0, T ).

P (1, T + dt) =
(N1)!

(N1 − 1)!1!
p1(1 − p)N1−1 (3.5)

= N1p(1 − p)N1−1

= N1(1 − e−λdt)e−λdt(N1−1)

≃ N1λdt(1 − λdt(N1 − 1))

≃ N1λdt

≃ (N0 − n)λdt

≃ N0λdt, (3.6)

(3.7)

where we have neglected second and higher order terms of the exponential expansion considering
dt infinitesimal. Therefore, if n ≪ N0, the probability of a photon decay in an infinitesimal interval
dt, is independent of the previous n decays.

3.2.5. Interactions of gamma-photons in matter

We have seen that unstable nuclei release energy in the form of photons or other particles.
In particular, we found that the emitted gamma-photons are very useful for imaging purposes.
However, these emissions are too high in energy and too small in size to be seen by the naked eye.
Therefore a detection procedure is needed in order to realize the presence of these emissions. In
fact, we observe their existence and estimate their energy only through the effects they produce in
matter. These effects are the result of the various forces and interactions that nuclear emissions
experience when they confront the atoms and molecules of the matter they traverse. Such pro-
cesses are the basis of radioactive radiation detection and define the efficiency and sensitivity of
detectors. The counterpart is that these interactions may interfere with the measurement, since
they may disturb the characteristics of radiation before detection. This can be caused, for example,
by deflection, absorption or loss of radiation energy before detection is accomplished. Interactions
depend on the type of radiation, its energy, and the material being traversed. For the relatively
low energies of interest in nuclear imaging, the most common interactions are electromagnetic in
nature, involving the atom and nucleus as a whole and also the atomic electrons.

Since photons carry electromagnetic field, they will interact with electric charge. Besides, for
the energy levels of interest in nuclear imaging, the most frequent interactions are with individ-
ual atomic electrons. The two main interactions among these are the Compton effect and the
photoelectric effect.

Compton effect

If the incident photon energy and momentum are, respectively, much larger than the binding
energy and momentum of the struck electron, the latter can be considered, for calculation purposes,
as approximately free or loosely bound and at rest. Because the photon is massless and the electron
is not, for energy and momentum conservation, the photon cannot transfer all its energy and be
absorbed by a loosely bound electron at rest. Therefore, this interaction results in a deviation or
scatter of the photon and a reduction of its energy. Such an interaction between a high-energy
photon (in our case a gamma-photon) and a loosely bound electron is termed Compton scatter.

Photoelectric effect

Unlike the previous case, a gamma-ray can transfer all its energy to a bound electron, since
the atom can absorb part of the recoil momentum allowing both, energy and momentum, to be

23



conserved. The result of this interaction is the ejection of the electron, known as photoelectron,
and the complete absorption and disappearance of the incident photon. This process is known as
photoelectric effect.

Attenuation

A beam of photons traversing matter is degraded in intensity (number of photons forming the
beam) since, along its path, photons may be removed from the beam either by deviation (Compton
scatter) or absorption (photoelectric effect). However, those that remain part of the beam, i.e. do
not suffer interactions with matter, retain their full energy. This intensity reduction phenomenon
is known as attenuation. Together with other effects, is one of the image quality degradation
causes.
The attenuation for a narrow photon beam in uniform matter follows an exponential law with the
penetration distance x

I(x) = I0e
−µx,

where I(x) is the beam intensity at penetration distance x, I0 is the non-attenuated incident beam
and µ is the attenuation coefficient. The µ value is related to the density and atomic number of
the absorbing material and the energy of the incoming photons.

Exploiting interactions for detection

As mentioned before, the way of detecting photons is by their interaction with matter, in par-
ticular, with the detector. A photon will be detected when it impacts the detector and interacts
with it, either transferring all its energy (photoelectric absorption) or part of it (Compton scatter).
The total amount of energy deposited and recorded in the detector represents the energy of the
incoming photons. The absorbed energy follows different paths depending on the detector charac-
teristics. For example, for scintillator detectors, the absorbed energy produces either electron-holes
pairs if the scintillator material is inorganic crystal or excitation of molecular valence electrons if
it is an organic compound. The excitation produced with the absorption of the photon energy will
generate the energy, timing and positioning information necessary for imaging. See Section 3.3.3
for more details about the detection process and the evolution of the absorbed energy.

3.3. Gamma cameras

In the present section we will describe the principal characteristics and functioning scheme of
the gamma cameras. We are interested in knowing their operation in order to better understand
the image formation process, the characteristics of the obtained images and the different aspects
concerning image quality. A gamma camera is a camera capable of capturing gamma-photons.
Different types of gamma cameras have been developed over the years, usually with a common
basic modular structure and varying the characteristics of certain modules. In the present work
we will focus on a particular type of gamma camera, known as the Anger camera, since it is the
most widely used camera in clinical applications. However, many general concepts are still valid
for most cameras and can be directly extended. This section is based on [18].

3.3.1. The Anger camera

The Anger camera was originally proposed by Hal Anger, a scientist at the University of Cal-
ifornia at Berkeley, in 1958. He developed a device capable of imaging gamma emissions. Despite
many innovations have been introduced since then, the basic functioning principles remain the
same in today’s most commonly used clinical gamma cameras. For this reason they are still called
Anger cameras. In the following we describe the basic operation of the Anger like cameras.
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Figure 3.1 presents a sketch of an Anger camera showing its principal components. We can
summarize them as: the collimator, the scintillator crystal, light guides, photomultiplier tubes
(PMT), energy discrimination and positioning electronics and the display of the acquired data.
The collimator works as a photon direction selector, since it allows photons coming in certain
directions to go through and absorbs the others. The selected directions are defined by its bores.
Those photons that successfully traverse the collimator reach the scintillator crystal. A fraction
of them will interact with the crystal and the rest will pass through without interacting. When
interacting with the crystal, the photon deposits part or all of its energy, generating multiple light
photons. These light photons propagate through the crystal and light guides to an array of PMTs.
The PMTs are sensitive high-voltage devices that produce measurable electric current from as
little as a single light photon. Each PMT outputs a current proportional to the number of light
photons reaching it. Since the light output from the scintillator crystal is spatially broad, several
PMTs in the array are reached by light photons from a single gamma-photon - crystal interaction.
Hence, electronic and software is used to infer the gamma-photon real impacting location (impact-
ing location in the crystal) from the output PMT currents. In addition to being used to estimate
the interaction location in the crystal, these signals are used to estimate the deposited energy.
An energy window is defined in order to avoid recording reduced energy photons. If the photon
deposited energy value is not in the pre-defined valid energy range (energy window), the photon is
rejected. Reduced energy is an indication that the photon has undergone a scatter in its path from
the patient to the crystal. This means it has been deflected from its original direction and thus its
inclusion reduces image quality since it will be counted in the incorrect location (scattering noise).
The detected photons are recorded together with their estimated locations and the information is
discretized to be displayed as a digital image. Each image pixel value represents the total photons
counted in its corresponding crystal area. Thus, the image produced by the Anger camera is a
histogram of the spatial distribution of all detected photons.

Figure 3.1: Principal components of an Anger camera. The emitted gamma-photons that manage to
pass through the collimator, impact the scintillator crystal. Photoelectrons produced in the
gamma-photon - crystal interaction are captured by the photomultiplier tubes. The gamma-
photon energy and impact location is estimated from the photoelectron’s deposited energy
and impact location.
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3.3.2. Principles of collimation

A parallel-hole collimator is an array of parallel bores of uniform size surrounded by septa. It
allows only all photons traveling in (or nearly) a particular direction to pass through by absorbing
those not verifying this condition. For this reason, its sensitivity is highly dependent on its ability
to absorb the non-desired photons. Ideally, those photons not traveling along the direction of the
bores (i.e. normal to the face of the scintillation crystal) should be absorbed. However, since
the bore diameter is not infinitesimally small, there exists a range of incident angles that will be
accepted. The larger the bore diameter, the larger the acceptance angle range and the poorer the
camera spatial resolution. In addition, the collimator performance is affected by the fact that the
septa material does not absorb all the incident photons. This effect, called septal penetration,
accounts for some of the incident photons making it to traverse the collimator, not through the
bores but through the septa. Also, part of the photons may undergo scatter, either in the bores or
the septa, before reaching the scintillator crystal. All of these effects contribute to degrade image
quality and are thus related to the collimator sensitivity.

For the reasons previously exposed, it is necessary that the collimator septa is composed of a
highly absorbing material. Alloys of lead are the most commonly used ones. Alloys of tungsten
and gold are also used, but not so frequently since the former is difficult to work and the latter
is relatively expensive. The holes can vary in shape (e.g. circular, square, triangular, hexagonal),
with the hexagonal being the commonly preferred for its efficiency. The bores pattern can also
vary. Parallel patterns are the most frequent ones but converging and diverging patterns can also
be found. For example, converging collimators magnify the image on the camera face and thus
can yield to finner resolution images than those obtained with parallel-hole collimators. They may
result specially useful when imaging objects of small size with respect to the camera detector face.
In clinical use, they are primarily used for brain spect because the brain size is relatively small
with respect to the field of view of most cameras.

3.3.3. Principles of detection

The scintillator detector, used to detect photons in the gamma camera, comprises: a scintilla-
tion crystal, a light guide, an array of PMTs and positioning electronics and software.

The scintillator crystal absorbs gamma-photons by the interactions of these with crystal mat-
ter (see Section 3.2.5 for a description of these interactions). This absorption results in an energy
transfer from the photon to the crystal, and the corresponding emission of light and ultraviolet
(UV) photons. The process is known as scintillation. The scintillator crystal can be seen as a wave-
length shifter, since it emits long wavelength radiation (visible and UV) from short wavelength
radiation (gamma-photons). Since the number of light photons generated in the crystal depends
on the energy of the impacting photon, the scintillation process can be used for energy-selective
counting. In order to increase the crystal detection capability, it is desirable for it to have high
atomic number and high density, so that to augment the probability of interaction. The most
commonly used materials is NaI(Tl) (thallium-doped sodium iodide). Also a thicker crystal would
lead to a higher detection capability, since it can stop more gamma-photons. However, it exists a
trade-off between the thickness and the intrinsic resolution of the crystal. The thicker the crystal,
the poorer its intrinsic resolution.

Once the photon is absorbed by the crystal, visible light photons are created and propagate
through the crystal. Each event, gamma-photon - crystal interaction, is seen at the outer face of
the crystal as a broadly spatially distributed region of light and not as a tiny punctual spot, as
we might expect. The brightest part of the region will roughly coincide with the gamma-photon
impact location. The generated light photons are then transfered to the PMTs through a plate
of optically transparent material called light guide. The characteristics of the light guide (e.g.
thickness and shape) are sometimes chosen so that to improve the impact location estimation
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from the PMTs output.

A PMT is a vacuum-tube light detector made up with an evacuated glass envelope containing
an anode, a cathode and several intermediate electrodes called dynodes. They are fabricated
with glass faceplates, which can be circular, square or hexagonal. Typical gamma cameras have
an array of 37 to 93 hexagonal PMTs. The light photons impinge on the PMTs cathodes and
generate electrons that will be measured at the PMT output. In their path through the PMT, the
number of electrons is multiplied by the dynodes, since the dynodes are coated with a material that
emits secondary electrons when struck by an electron. As a result, the PMT output is an amplified
version of the signal initiated at the cathode when triggered by the light photons resulting from
the gamma-photon - crystal interaction. As previously mentioned, each gamma-photon - crystal
interaction is seen as a broadly spatially distributed region of light in the outer face of the crystal.
This causes that several PMTs are reached by the light photons resulting form one interaction.
The sum of all PMT outputs is computed to estimate the energy of the impacting gamma-photon.
If this energy value is not within a set energy window, the photon is discarded. This energy-
selective counting allows to reduce the count of scattered photons, improving image quality. The
output of the PMTs is also used to compute an estimate of the photon impact location, which in
general should be close to the central region of the reached PMTs. This introduces an uncertainty
in photon impact location, that is intrinsic to the photon detection process.
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Chapter 4

SPECT Simulations

Simulations can become a very useful tool in nuclear imaging applications because of the
frequent lack of ground-truth. We found it very helpful, along this work, to perform several
experimental tests, using simulations, to verify various statements and proposed models. For that
reason, we dedicate this section to the description of et simulations. In Section 4.1 we present a
block diagram that defines the principal steps composing the simulation process. We mention some
of the tools available for each step and pay specific attention to SimSET, the software package we
chose to perform simulations. Section 4.2 describes the SimSET package, its modular structure
and principal facilities. Finally, Section 4.3 is dedicated to describe some ideas related to the
generation of a realistic spect simulation.

4.1. Steps of an ET simulation

Quantitative evaluation of et processing methods (e.g. reconstruction, registration, denoising
methods) is difficult due to the frequent lack of ground-truth. Because of this, the use of simulation
tools plays a key role in algorithm testing and evaluation. We can broadly summarize the steps
involved in an et simulation according to the following pipeline:

4.1.1. Phantom definition

The phantom definition depends on the particular application the simulations is done for.
Phantoms can vary from a simple combination of geometrical shapes to a complex structure rep-
resenting a part of the body. Figure 4.1 shows an example of a simple geometrical phantom,
known as the Shep-Logan brain phantom and a more complex one, the NCAT brain phantom.
Lots of phantoms have been developed for different applications. Among the most complex and
most widely used, we can find the thorax and brain Zubal phantoms [19], the MCAT and NCAT
phantoms [20]. These phantoms are usually based on mri studies, since these studies achieve high
quality anatomical detail. The phantom definition usually involves the definition of its shape and
the radiotracer concentration level for each point. Varying these levels it is possible to perform
more, or less, realistic simulations. For example, if we want to simulate a brain tumor, we could
set the radiotracer concentration level to higher values in the specific tumor region. An interesting
approach is presented in [21], where Grova et al. propose a procedure to generate normal and
pathological brain perfusion spect images for evaluation of epilepsy related techniques.
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(a) Shep-Logan brain phantom (b) NCAT brain phantom

Figure 4.1: Examples of brain phantoms.

4.1.2. Gamma-photon emission simulation

The gamma-photon emission simulation consists in simulating the photon evolution process
from its emission from each phantom position to its arrival to the detector or discard. Monte Carlo
simulations are the most widely used techniques for this purpose. Attenuation effects throughout
the phantom, i.e. scattering and absorption, can be included in the simulation process.

4.1.3. ET acquisition simulation

The et acquisition process is the simulation of the spect or pet acquisition, depending on
the application and thus on the chosen technique. A fraction of those photons simulated in the
emission step will reach the gamma camera and will be counted as detected photons. The output
data will be the corresponding sinogram images. Monte Carlo techniques are also widely used for
this stage and different camera non-idealities can be included. For example, septal penetration for
the collimator or the quantum efficiency for the scintillator detector.

In the field of nuclear medicine, specifically for et, we can find tools developed to accom-
plish the second and third tasks: gamma-photon emission and et acquisition simulation. These
are usually the most complex and computationally demanding tasks of the simulation process.
Among other aspects, they differ in complexity and the capability of incorporating different stages
of the et acquisition process. In [22, 23] the authors present a comparison of the available et

simulation tools and a summary of the tools evolution in the last decade. According to [22], in
2004 there were 7 publicly available et simulation software packages (EGS4, MCNP, SimSET,
SIMIND, GEANT, Penelope and GATE). Up to the article [22] publication date in 2006, Sim-
SET [24] and SIMIND [25] were the most widely used packages. Nowadays, the GATE package,
released in 2004, is also widely used.

In the present work, we decide to use the SimSET simulation package for the experimental
verifications and analysis. Various reasons lead to this decision. First, its capacity to simulate
attenuation effects (scattering and absorption), non-ideal collimator (by means of a transfer func-
tion), non-ideal detector (energy resolution, scatter, absorption and penetration in planar multi-
layered detectors), which are the principal non-idealities we are interested in testing. Second, the
possibility of designing, either simple or complex phantoms. Third, the quality and simplicity
of its on-line documentation, which allows a proper understanding of the software operation and
facilities. Finally, the fact that it is currently supported by its designers (current version released
in April, 2009) and is also being used by the research community.
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(a) Simulated sinogram (b) Reconstructed image

Figure 4.2: Sinogram and reconstructed image slices of a spect simulation performed with SimSET, using
the NCAT brain phantom and the osem package for image reconstruction.

4.1.4. Image reconstruction

Up to this point we have simulated the emission and acquisition process, thus we have the
projection data or sinogram images. We must therefore reconstruct the sinogram images to obtain
the tomographic images. For this task we can chose among the different image reconstruction
techniques, for example fbp, ml-em or osem techniques presented in Section 2.4.

In the present work, for the experimental evaluations we used an implementation of the osem

algorithm developed by Richard Larkin. This package implements the osem algorithm described
in [14]. Apart from basic options as the number of subsets, the number of iterations, the size
of the reconstruction grid, it allows to model the camera non-idealities, through a point spread
function, and the attenuation effects, including them in the projection matrix computation. The
election of the osem algorithm was based on the wide usage of that technique in nowadays clinical
applications.

4.1.5. Data analysis

The last step is the data analysis, which will obviously depend on the specific application the
simulation is done for. It usually includes the computation of error indicators (e.g. mse) compar-
ing the obtained reconstructed image against the ground-truth (phantom radioactive distribution).

4.2. SimSET package

In the following sections we present a brief description of the simulation options and operation
of the SimSET package, since it is the tool that was chosen to perform all experimental testing
along this work, and a proposal for realistic spect simulations.

SimSET (Simulation System for Emission Tomography) is a freely available software package
developed by the Division of Nuclear Medicine of the University of Washington, Image Research
Laboratory [24]. It uses Monte Carlo techniques to simulate the physical process and acquisition
of et, for both pet and spect applications. It was first released in 1993 and is in constant mainte-
nance and development by the Image Research Laboratory group of the University of Washington.
It is widely used by the nuclear medicine research community with citations in a wide variety of
publications [26, 27, 28, 29]. It has a quite good on-line documentation describing its different
features.
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4.2.1. Package description

The software is written in a modular format, each module representing a stage of the et

acquisition process. The principal modules are: the Photon History Generator (PHG), the Colli-
mator module, the Detector module and the Binning module. Figure 4.3 shows a block diagram
representing the relationship between them and other auxiliar modules.

Figure 4.3: Simset package: modular structure. Block diagram showing the link between the different
modules. Picture based on diagram from [24].

Photon History Generator (PHG)

The core module is the PHG, which models photon emission and transport through hetero-
geneous attenuators in the object of interest (phantom). Both spect and pet can be simulated.
Scattering and photoelectric absorption simulation are supported. The inputs to the PHG module
are:

the spatial activity distribution in the phantom, i.e. the radiotracer concentration level in
curies/cc assigned to each voxel

the spatial attenuation distribution, i.e. the attenuation coefficient value (µ) assigned to
each phantom voxel

simulation options, e.g. spect or pet, the length of the scan, the phantom size (size in
pixels and pixel size in cm), whether importance sampling is to be included or not

data tables, used in the case of performing importance sampling

The software includes a tool called Object Editor, which facilitates the creation of the activity
and attenuation spatial distribution files to be used with the PHG. This tool enables to create
phantoms combining different basic shapes (voxel, sphere, cylinder) or a more complex one, pre-
viously defined (from a file). The activity and attenuation distribution files do not carry the real
activity or attenuation values but indices, then used as table lookup indices in the so called trans-
lation tables. Translation tables are auxiliary text files which maps each possible object index to
a corresponding data index, which is ultimately used to retrieve the specific data value. This level
of indirection between the activity/attenuation indices and real values facilitates the value change
of a particular voxel. The PHG allows to define the acceptance angle parameter, which imposes
a detection constraint on the incident photon’s angle. Those photons reaching the detector with
an impact angle larger than the acceptance angle are discarded. This allows to simulate non-ideal
collimation even if not including a specific collimator model through the Collimator Module. The
PHG outputs are:
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the tracked photons information

a statistical summary, detailed statistical information of the simulation results

a productivity table, in case importance sampling is being used

The Collimator Module

The Collimator module receives photons from the PHG and tracks them through the collimator
being modeled. Depending on the chosen collimator, different non-idealities can be simulated.
For spect, collimators are modeled using geometric transfer functions. The available options
are parallel, fan and cone beam hole collimators. For each photon, the software computes the
probability that the photon would pass through a hole without interacting with the collimator.
If this probability is non-zero the photon is accepted. Septal penetration and scatter within the
collimator are not modeled. For pet, collimators are simulated using Monte Carlo techniques.

The Detector Module

The detector module receives photons, either directly from the PHG (if no collimator is simu-
lated) or from the Collimator module. It tracks photons through the specified detector, recording
the interactions within the detector for each photon. This interactions are used to compute the
photon deposited energy and impact location. The currently supported detector models are: sim-
ple (spect and pet), planar (spect), dual head (pet), cylindrical (pet) and block (spect and
pet). The latter is still under testing. The simple model includes only Gaussian energy blurring.
The planar detector is modeled as layered rectangular parallelepipeds of different materials, where
each layer can be modeled as active or inactive. Photons transport is identical for all layers, but
only interactions in the active layers are considered to compute the deposited energy and impact
location. The simulated interactions include scatter, absorption and penetration. Scintillation
photons and photomultiplier tubes are not simulated.

The Binning Module

The Binning module is used to process the photon information recorded during the simulation.
It can be used during the simulation, on-the-fly, or after simulation is finished, processing the
corresponding photon history files. The photon history files contain the records of the photons
evolution during the simulation (emission direction, interactions, energy levels, etc), and can be
created at any stage of the simulation as outputs of the different modules. For example, the
Detector module can generate a photon history file containing the records of all the detected pho-
tons. Binning can be done according to different event properties, e.g. photon energy, scattering
history; and into different histogram formats, e.g. sinograms. Binning according to photon energy
is done specifying the accepted energy range (minimum and maximum accepted deposited energy
values) and the number of desired bins. Binning according to scattering is done specifying the
minimum and maximum number of allowed scatters and the number of desired bins. In order to
define the sinogram creation, the user must specify the number of bins for each binning direction:
number of axial slices (e.g. the number of detector rows), the number of projection angles (must
be equal to the number of collimator positions), the number of transaxial bins (i.e. the number of
detector elements in a 1D projection). Also a minimum and maximum acceptable values may be
defined in each direction. All photons that fall within these ranges are included in the histogram
while the others are discarded. The order in which the binning parameters are specified in the
Binning module parameters input file is very important, since data will be ordered in the his-
tograms according to this ordering. Going from slowest varying to fastest varying, top to bottom.
The first dimension specified in this file will vary the slowest while the last dimension specified in
this file will vary the fastest. For example, if we specify the parameters in the following ordering:
projection angle bins, axial slices, transaxial bins; in the output sinogram files data will be or-
dered: projection angle (slowest varying), axial slices, transaxial bins (fastest varying). Suppose
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that we also include 2 bins to differentiate scattered and non scattered photons, and define this
parameter at the beginning of the binning parameter file. In that case the output file will include
two sinograms, with directions in the previous order, the first one for the non-scattered photons
and the second one for the rest.

Output data

Three different output files may be obtained from the Binning module. These are: the count
image, the weight image and the weight squared image. If no importance sampling is used (e.g. no
stratification, forced detection, or forced non-absorption in the PHG, no forced interaction in the
detector module, and no SPECT collimation), the counts image can be used directly as normal
nuclear medicine data, i.e. as the number of detected photon counts. Otherwise, this is not pos-
sible since the count values are biased and do not represent real photon counts. In this case, the
valuable information is carried by the weights and square weights images. When using importance
sampling techniques, the weights image is the expected value image, i.e. the image that would be
obtained in a sufficiently long scan with sufficiently high administered radiotracer levels [30]. If we
accept the hypothesis that the photon counts are Poisson distributed, we could generate a Poisson
image from the weights image, taking the latter as the Poisson parameter for each voxel. This
way we could generate different et realizations (with different Poisson realizations) from the same
weights image, which can be very useful for evaluation and testing. It is also very important to
take into account the squared weights image. This image represents the variance in the expected
value estimation. For each of the sinogram voxels, the corresponding weights image voxel gives an
estimation of the expected value of the photon counts in that voxel, and the corresponding squared
weights image voxel gives the variance of that estimation. If we obtain a squared weights image
with values in the order of magnitude of the weights image, that tells us that the expected photon
counts estimation is not highly reliable. The same thing happens when setting the number of
decays to simulate (num to simulate) to a number different from zero. In that case the number of
decays to simulate is fixed and not computed from the scan length and phantom activity. Hence,
the count values do not correspond to the real scan with the given activity and length and the
weights image must be used again.

4.2.2. Importance sampling techniques

Monte Carlo techniques are widely used to study the transmission and scattering of photons
through both, homogeneous or heterogeneous materials. In a conventional Monte Carlo scheme,
emissions occur isotropically and photons are tracked until they escape the object. Because of
the relatively small solid angle of acceptance of most cameras, the vast majority of all emitted
photons either are absorbed in the object, escape without impacting the inner face of the colli-
mator or impact the latter with an angle of incidence resulting in absorption by the collimator.
Therefore, in conventional simulations, only a small percentage of decays will actually result in de-
tected particles. A series of techniques have been developed to overcome this problem and increase
the efficiency of simulations. The primary techniques are forced detection and stratification [30].
These techniques require the assignment of a weight to each simulated photon history, a positive
real number representing the real world histories that particular history represents.

Stratification consists in determining the frequencies with which the various regions of the
state-space are used to start a particle simulation. For example, the possible starting states can
be divided into stratification cells according to the tomograph axis, the angle of photon direction
with respect to the tomograph axis, and whether the starting particle will be used for sampling
of non-scattered particles, scattered or both. These variables may be chosen for stratification
because of their major effect on the probability on a photon being detected. A couple of training
simulations must be performed before the real simulation in order to determine the frequencies
of detected photons for each stratification cell (productivity table). Then the simulation is done
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according to the found frequencies. i.e. more particles are started from the stratification cells of
highest frequency. Each simulated photon path must be assigned a weight to compensate this bias
effect.

In conventional Monte Carlo simulations, photons are tracked until they escape the object,
are absorbed or their energy drops down from a defined threshold. Force detection refers to the
modification of this technique to forbid photoelectric absorption. Instead, the photon weight is
decremented at each scatter to reflect the possibility of absorption. The computational perfor-
mance of the simulations is considerably increased by the combination of stratification and force
detection techniques [30].

4.3. Realistic SPECT simulations

When evaluating data analysis or processing algorithms it is important to use testing images in
accordance with real image characteristics. The usage of phantoms, as those mentioned in Section
4.1, helps in this sense. For the particular case of et images, it is important to study aspects as
the total number of photon counts and contrast levels in real scans. This information can then be
used to generate realistic phantoms. We computed the total number of counts in spect sinograms
of a brain perfusion study for 14 healthy adult patients. The average value of photon counts found
is 5.7×106, with a standard deviation of 1.2×106 counts. This result is in agreement with the one
presented by Grova et al. in [21]. Studying real contrast levels is also very important since it has
great impact in a wide variety of applications. In particular, for the epileptogenic zones detection
problem in medically refractory epilepsy cases (which will be presented in Section 6.1), it is of
special interest since simulating a epileptogenic zone too contrasted compared to what would be
normal, greatly simplifies the detection and will distort the results. Other examples can also be
found in corregistration and denoising applications.

Another aspect to be considered is the number of non-idealities included in the simulation.
Many of them have already been mentioned and can be simulated by the SimSET package. The
larger the number of non-idealities that are taken into account, the more realistic the simulation.
In [21] Grova et al. present an interesting methodology to generate normal or pathological spect

data perfectly aligned with a high-resolution mri, using the SimSET package. They model brain
perfusion function by proposing a theoretical model of brain perfusion from measurements per-
formed on real spect images. Two models are proposed, one for normal perfusion and one for
ictal brain perfusion characteristic of mesial temporal lobe epilepsy. This methodology may be
of interest for evaluating various methods, in particular those of epileptogenic zones localization.
One disadvantage of the method is the need to combine information from various patients. As
will be mentioned in posterior sections, a model made from the combination of different patients
can be questionable since patients with particular lesions may present particular function patterns
and also patient’s age affects the results.
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Chapter 5

SPECT Images Characterization

One of the main goals of the present study is to achieve a deep understanding of the spect

images, in order to have a reasonable image characterization, which allows to design denoising
and data analysis techniques. For that reason, we have dedicated Chapter 2 to the analysis of the
et techniques in general, including the acquisition process and the reconstruction techniques, and
Chapter 3 to the analysis of the spect studies, including the physical phenomena involved and the
specific spect acquisition process performed by the Anger cameras. This chapter focuses on the
spect images characterization. In Sections 5.1 and 5.2, image models are derived for sinogram
and tomographic (post-reconstruction) images, respectively. For sinogram characterization, a
mathematical model is proposed, including the Poisson nature of the radioactive decays, the
attenuation effects (scatter and absorption), non-ideal collimation and non-ideal detection effects.
The derived model poses a Poisson distributed sinogram image, with the pixels being represented
by independent Poisson distributed random variables. This result is widely accepted and used in
the nuclear medicine research community [10, 31, 13]. Anyway, we felt it was necessary to make
the analysis since, in general, the previous result is accepted but no justification or mention to its
validity assumptions, are provided. Besides, we consider that the exercise of analysis, modeling
and deduction up to reaching the result is crucial to understand in depth the image formation
process and its characteristics. A derivation of the estimation of the Poisson parameter for each
pixel, taking into account the previously mentioned effects, is also provided. In Section 5.1.6 we
present some tests performed to experimentally verify the proposed model. For the tomographic or
post-reconstruction images we introduce the approach proposed in [8] by Barrett et al. They study
the tomographic images characterization after ml-em reconstruction. The sinogram’s independent
Poisson distributed pixels are found to be transformed by ml-em, up to a first order approximation,
into a multivariate log-normal law, with a given correlation matrix. In [32], experimental tests are
performed to verify the accuracy of the proposed model and the validity of the approximation.

5.1. Sinogram Images Characterization

This section focuses on the description of sinograms. In Section 5.1.1 we start introducing
some basic concepts related to the sinogram formation process and general sinogram characteris-
tics. Next, in Sections 5.1.2, 5.1.3 and 5.1.4, we proceed to introduce a mathematical model of
the sinogram formation process in spect with Anger like cameras. For simplicity, we divide the
formation process into three main stages: photon emission, photon evolution and camera acqui-
sition. Through this approach, we verify the accepted model of independent, Poisson distributed
pixels in the sinograms and find certain conditions of validity of the model. We also propose a
model of the noise-free sinogram, i.e. the image of the Poisson parameters corresponding to each
sinogram pixel. Finally, in Section 5.1.6 we perform experimental tests to validate the theoretical
results.
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The idea of modeling the detected photon’s distribution as a binomial selection of a Poisson
process, and therefore remaining Poisson distributed, is also presented by Barrett et al. [5] and
Harrison et al. [6] for Anger like cameras and by Marcovski in [7] for projection radiography.
As far as we are concerned, a detailed analysis of the acquisition process and justification of the
validity of the previous assumption at each step is not presented. In this work we take the previous
idea and analyze each step of the acquisition process, starting from the 3D volumetric emission,
considering photon evolution throughout the volume and the acquisition process itself, in order to
understand in depth the process, study the applicability of the model and justify each assumption
that is made.

5.1.1. Noise Sources

One of the main causes of spect image degradation is photon noise. Photon noise, also known
as Poisson noise, has its origin in the random nature of radioactive decays. Gamma-rays are the
result of radioactive decays, which can be modeled as a Poisson process (c.f. Section 3.2.4). The
probability of an event being counted in a certain detector region is proportional to the expected
number of gamma-rays arriving to that region. Thus the expected value of counts in bright areas
is higher than that of dark areas. However, the exact number of counts is a random variable. If
the same emission experiment is repeated several times, the number of recorded photons during
a given time period will be different each time. As will be shown in the following, the fluctua-
tion in photon counts is accurately modeled by a Poisson distribution. This fluctuation gives a
speckled appearance to the sinograms, giving it the name noise. Figure 5.1 shows an example of a
real sinogram. We recall the definition of sinogram introduced in Section 2.3: for a given volume
slice, the set of all 1D projections for 0 ≤ θ < 2π, as a 2D function of xr and θ, is named sinogram.

Let us cal noise-free sinogram the image of expected count values. If we could repeat the
exact acquisition experiment infinite times, the noise-free sinogram would be the average of the
sinograms obtained experimentally. It could also be obtained with high enough total counts, i.e.
for a sufficiently high radioactive concentration level or for a long enough scan. The latter taking
into account the scan length restriction impossed by the approximation λT << 1 (c.f. Section
3.2.4). However, nuclear medicine images tend to be very noisy, since the low radiotracer doses
administered to the patient results in low count images.

Figure 5.1: Real sinogram image. Notice the speckled appearance of the image. Image provided by the
Center of Nuclear Medicine of Hospital de Cĺınicas, Facultad de Medicina, Universidad de la
República, Uruguay.

There exists other sources of spect images degradation such as attenuation effects, scatter
noise, the camera non-ideal response. However, it is important to remark that those degradation
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sources are not the cause of photon counts fluctuations but it is the random nature of radioactive
decays. As it will be explained in the following sections, for those gamma cameras working in
counting mode, effects as attenuation, scatter noise and the camera non-ideal response will affect
the expected counts value image or noise-free sinograms.

5.1.2. Photon Emission Model

The following analysis is strongly based on the studies of photon detection in et images pre-
sented by Barrett and Swindell in [6] and by Barret, Myers and Dhurjaty in [5]. We have already
seen that photon emission can be modeled by a Poisson process (c.f. Section 3.2.4). Given an
emitting volume V we propose to model the distribution of emitted photons V(r) in a time period
T as a sequence of Poisson impulses randomly distributed in space,

V(r) =

K∑

k=1

δ(r − Rk),

where r and Rk are three-dimensional vectors, and Rk is a random variable. We consider the
volume V and exposure time T during which emissions occur at positions {Rk} contained in V.
K is a Poisson random variable of parameter λ representing the total number of photons emitted
by volume V during time period T . δ is the delta function (a generalized function) so that V(r)
is a generalized random process.

It can be shown (see Appendix A) that the expected value of the process V(r) is

E[V(r)] = λp(r), (5.1)

with p(r) the probability density function of the i.i.d random variables Rk. Thus for a given
location r in V, the mean number of photons emitted per unit volume is proportional to both, the
probability of a photon being emitted at that location and the expected total number of emitted
photons λ.

Let us introduce function V (r) with

V (r) = E[V(r)], (5.2)

i.e. V (r) represents the expected number of photons emitted in all directions from a unit volume
centered at r in a time period T . Since λ is the expected total number of emitted photons in V,
it must verify

λ =

∫

V

V (r)dr. (5.3)

Finally, from equations 5.1-5.3 we have

p(r) =
V (r)

λ
=

V (r)
∫

V
V (r)dr

. (5.4)

The autocorrelation and autocovariance functions of V(r) are given by [5],

RV(r, r + l) = V (r)δ(l) + V (r)V (r + l)

KV(r, r + l) = V (r)δ(l).

It is interesting to notice that V (r) has a dual interpretation. It is the mean number of emitted
photons per unit volume and after normalization (5.4) is the probability density on the position
of any individual emission.
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It is also of interest to study the statistics of the number of emitted photons from a given
region or sub-volume of V. Let us consider a division of volume V in N voxels of equal volume
v. The random variable Vn, n = 1, . . . , N , representing the number of photons emitted from the
n-th voxel is given by

Vn =

∫

vn

V(r)dr,

where the integration is over the volume of the n-th voxel. Note that even if all voxels have equal
volume v, we make the subindex n explicit in the integral (vn) since the integral of V(r) varies
with position. K photons are emitted in time T and each has a probability Pn of being emitted
from pixel n with

Pn =

∫

vn
V (r)dr

∫

V
V (r)dr

.

As the emissions are statistically independent the conditional probability P (Q = q|K = k) of q of
the k photons being emitted from the n-th voxel is binomial with probability Pn. Therefore Q is
Poisson distributed with parameter λPn, since a binomial selection of a Poisson variable remains
Poisson distributed with parameter equal to the mean of the input Poisson times the probability of
success of the binomial distribution. This fundamental result is known as the Binomial Selection
Theorem [5] and is formalized as follows.

Binomial Selection Theorem 5.1.1. Let K be a Poisson distributed random variable with pa-
rameter λ. Let Q be a selection of K according to a binomial process with probability of selection
p. Then the random variable Q is Poisson distributed with parameter λp.

Proof. The marginal probability of Q is given by

P (Q = q) =

∞∑

k=q

P (K = k)P (Q = q|K = k).

Since K is a Poisson random variable and P (Q = q|K = k) is binomial we have,

P (Q = q) =
∞∑

k=q

e−λ λk

k!

k!

(k − q)!
pq(1 − p)k−q

= e−λ (λp)q

q!

∞∑

k=q

(λ(1 − p))k−q

(k − q)!

= e−λp (λp)q

q!
.

Thus Q follows a Poisson distribution with expected value λp.

Now that we have a model for the emission distribution, we can analyze the sinogram formation
process. For illustration purposes we will divide the process in two stages. The first stage will
consider the photons evolution throughout the volume V ending in the outer face of the collimator.
The second stage will include the camera acquisition process, from collimation until the sinogram
formation. Figure 5.2 illustrates this.
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Figure 5.2: Sinogram formation process. The two stages represent the photons evolution (First Stage)
and the acquisition process (Second Stage).

5.1.3. First Stage: Photon evolution

The input to the first stage is the array of delta functions modeled by the process V(r). The
output will be the photons reaching the collimator plane C. By collimator plane we understand
the plane limited to the collimator area, since we are not interested in the region outside the col-
limator/camera limits. Each delta input (emitted photon) δ(r − Rk) will produce a delta output
δ(r − R′

i) in the case of the photon reaching the collimator plane and no output if it is absorbed
or out of the collimator limits. We can model the evolution of photons throughout the volume as
a mapping of a sequence of impulses V(r) to another sequence of impulses U(r).

It is not relevant to the U(r) process characterization whether the photons arrived directly or
suffered deviations. The key point is whether an emitted photon impacts the collimator plane or
not, so that the input delta sequence is transformed into an output delta sequence. The random
variable R′

i represents the photon impact location in the collimator plane. Since the photons are
emitted in all directions and can suffer multiple deviations until reaching the collimator plane, the
impact location is not a deterministic but a random variable. Besides, considering the Binomial
Selection Theorem 5.1.1 it can be seen that the number of photons reaching the collimator plane
Kd is a Poisson random variable. The total number of emitted photons K follows a Poisson
distribution with expected value λ. A binomial process of probability pd rules the arrival of
photons to the collimator plane, i.e. every emitted photon reaches the collimator plane with a
probability pd and is discarded with probability (1 − pd). Thus the number of photons reaching
the collimator plane Kd follows a Poisson distribution with expected value λpd. We represent the
distribution of photons reaching the collimator plane as

U(r) =

Kd∑

i=1

δ(r − R′
i),

where r and R′
i are two-dimensional vectors, and R′

i is a random variable1.

Each photon reaches the collimator plane C independently of the others, therefore the number
of counted photons for different locations are independent. Photon counts independence could be
questioned for photons coming from the same emitting source. Let us define a punctual emitting
source as an emitting source of unit volume. If we consider a punctual emitting source S, with S

1We will use the notation r to differentiate the two-dimensional vectors from the three-dimensional vectors r.
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modeling the number of emitted photons, and two collimator plane disjoint areas with number of
counts DA and DB , one might expect in the case of S being high, that both DA and DB would
also be high. The same when S happens to be low, both DA and DB might be expected to be
low. In that case the correlation between DA and DB would not be zero and the counts in both
locations would not be independent. We will show in the following that this is not the case and
the counts in any different locations are independent.

In the same way we did for volume V, we discretize the collimator plane C in N pixels of equal
area d. The random variable DS

j , j = 1, . . . , N , representing the number of photons emitted by
source S and reaching the collimator plane pixel j-th is given by,

DS
j =

∫

dj

US(r)dr,

where the integration is over the area of pixel j and

US(r) =

KdS∑

i=1

δ(r − R′
i),

is the spatial random process modeling the distribution of photons reaching the collimator plane
and coming from the emitting source S.

Once again, by means of the binomial selection theorem we can prove that DS
j follows a Pois-

son distribution for each j. The total number of photons KdS
reaching the collimator plane and

coming from S follows a Poisson distribution with expected value λS . On the other hand, with
probability Pj a photon reaches the j-th pixel. Therefore we have a binomial selection of a Poisson
process, which yields a Poisson variable with expected value λSPj .

Let us consider the Poisson random variables DS
A and DS

B , for A 6= B two pixels in C. Let

XS,A
k be the random variable taking value 1 if the k-th photon emitted by S reaches pixel A and

0 otherwise. Idem for XS,B
k .

P
[

DS
A = a and DS

B = b
]

=P





KdS∑

k=1

XS,A
k = a and

KdS∑

k=1

XS,B
k = b





=

∞∑

n=a+b

e−λS
λn

S

n!
P

[
n∑

k=1

XS,A
k = a and

n∑

k=1

XS,B
k = b

]

.

P
[
∑n

k=1 XS,A
k = a and

∑n
k=1 XS,B

k = b
]

is the probability that a of the n emitted photons reach

pixel A while b reach pixel B. Photons are independent of each other, but one given photon cannot
reach pixels A and B at the same time. The probability is then calculated using the trinomial law

P
[

DS
A = a and DS

B = b
]

=

∞∑

n=a+b

e−λS
λn

S

n!

n!

(n − a − b)!a!b!

(pS,A)a(pS,B)b(1 − pS,A − pS,B)n−a−b

= e−λS
(λSpS,A)a

a!

(λSpS,B)b

b!
∞∑

n=a+b

(λS(1 − pS,A − pS,B))n−a−b

(n − a − b)!

= e−λSpS,A
(λSpS,A)a

a!
e−λSpS,B

(λSpS,B)b

b!

= P [DS
A = a]P [DS

B = b].
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with pS,A = λSPA and pS,B = λSPB.

Therefore the random variables DS
A and DS

B are independent.
It is interesting to remark that this result is a consequence of the number of emitted photons S
being Poisson distributed. If S were not Poisson distributed, the number of counts in different
locations would not be independent.

5.1.4. Second Stage: Acquisition Process

The second stage considers the camera acquisition process. We will consider the case of Anger
like cameras since these are the most commonly used cameras nowadays. The input to the camera
is modeled by the process U(r), the distribution of photon counts in the collimator plane. As
explained in Section 3.3.1, Anger like cameras work in counting mode, namely they count the
detected photons. For each detected photon they find its impact location and increment in one
the total counts for that location. The output image is a histogram of the detected photons. Thus
each delta input δ(r−R′

i) produces a delta output δ(r−R′
j), where (R′

i−R′
j) is a position uncer-

tainty introduced by the camera. No output is obtained if the photon is not counted. As for the
first stage, the acquisition process can be modeled as a mapping of a sequence of impulses U(r) to
another sequence of impulses G(r). The position uncertainty is related to the acquisition process.
The photon impacts the collimator plane in a certain position R′

i. If it manages to traverse the
collimator, it will impact the scintillator crystal in a position R′

c, where (R′
i − R′

c) accounts for
the collimator effects (scatter in the collimator). The gamma-photon - crystal interaction will
generate multiple light photons used to estimate the interaction position and deposited energy.
The generated light photons propagate through the crystal and light guides to an array of pho-
tomultiplier tubes (PMTs). Each PMT generates an output voltage proportional to the number
of light photons detected. A weighted sum of PMTs output voltages is used to estimate the de-
posited energy and photon impact location (R′

d). Thus there is a position uncertainty (R′
c −R′

d)
introduced by the detection process. The uncertainty (R′

i − R′
j) is the resulting combination of

all the detection process briefly summarized here.

As for the first stage case we can show that the total number of counted photons remains
Poisson distributed. Once again, the input Poisson process is combined with a binomial process of
counting or not counting each photon. With a binomial probability pc the photon will be counted
and with probability (1 − pc) it will be discarded. According to the Binomial Selection Theorem
5.1.1 the total number of counted photons is Poisson distributed.

Let D be the detector plane where the detected photons are located and counted, i.e. a detected
photon is located at a position R′

j in D (which is not necessary the same location R′
c where it

actually impacts the camera detector). We consider a division of D in M ′ pixels of equal size d.
Let Gm be the random variable representing the number of photons counted in pixel m of the
detector image. Gm is thus given by

Gm =

∫

dm

G(r)dr,

where the integral is over the area of the m-th detector pixel.
Following the same ideas used to show that Vn (the number of photons emitted from the n-th
voxel) is Poisson distributed, we can show that Gm is also Poisson distributed. Besides, following
an analysis similar to that performed for the first stage we can show that the number of photon
counts in different locations, GA and GB with A 6= B two different detector pixels, are indepen-
dent.

It is important to highlight that the previous approach is valid in the case of the Anger
like cameras, where one detected photon is counted as one event. For other imaging
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systems where, for example, one event is mapped to an image region, this approach is not valid
and different detector pixels become correlated.

To complete the sinogram formation process we still have to consider the camera rotation
around the volume of interest. The previous analysis, which led us to describe the photon counts
in the camera detector as a mutually independent, Poisson distributed, grid of pixels {Gm}M ′

m=1,
is valid for all camera projection angles. Independence between photon counts in different projec-
tions is also valid, since projections are acquired in different time instants and therefore can be
seen as independent realizations of the Poisson process.

Conclusion The photon counts in each detector pixel {Gm}M ′

m=1, for all projection angles 0 ≤
θ < 2π, are mutually independent Poisson distributed random variables. Finally, recalling the
definition of sinogram image, we conclude that the sinogram image pixels can be modeled as in-
dependent, Poisson distributed random variables.

5.1.5. Noise-free Sinogram Formation

Given that different pixels of the sinogram are independent Poisson random variables, we can
have a complete statistical description of the sinogram through its expected value image, namely
the noise-free sinogram {Gm}M

m=1, with

Gm = E(Gm)

= E

[∫

dm

G(r)dr

]

=

∫

dm

E[G(r)]dr

=

∫

dm

G(r)dr,

where the integral is over the area of the m-th detector pixel.

This motivates the following analysis, based on an approach presented in [5], by which we
model the mean photon counts distribution G(r) as a linear transformation of the mean photon
emission distribution V (r). This linear transformation models the acquisition process.

As defined in equation (5.2), V (r) is the expected number of photons emitted in all directions
from a unit volume centered at r. We assume that V (r) is independent of time over the exposure
time of the image acquisition process. This hypothesis is reasonable for most of the commonly
used radiotracers. We start by introducing some notation. Let us consider the frame of reference
attached to the volume of interest, described by the coordinates (x, y, z) as shown in Figure 5.3.
Let us introduce plane P located somewhere in between the volume of interest and the collimator,
defined as P = {(x, y, z) ∈ R

3|z = zp}. The mean number of photons per unit area, reaching P at

position rp = (x, y), coming from V (r) in straight line, from a given direction d̂ is

W (rp, d̂) =

∫ ∞

0

V (r − d̂l) exp

[

−
∫ l

0

µatt(r − d̂l′)dl′

]

dl. (5.5)

where the 3D vector r, verifies r = (x, y, zp), i.e. r and rp represent the same point (x, y) on

plane P. The interpretation of this equation is that W (rp, d̂) is found by integrating the source

distribution along a line parallel to d̂ and passing through the point rp, weighted with an atten-
uation factor (µatt), since distant points along the line contribute less. Figure 5.3 illustrates this.
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Figure 5.3: 3D to 2D projection. W (rp , d̂) is the mean number of photons per unit area, reaching P at
position rp = (x, y), coming from V (r) in straight line, in a given direction d̂. It is found
integrating the source distribution along a line parallel to d̂ and passing through the point rp ,
weighted with an attenuation factor, since distant points along the line contribute less.

Because we wont consider scattered photons in this analysis, only those originating along this line
and traveling with direction d̂ can contribute to W (rp, d̂). Scattered photons will affect the image.
They may be modeled as additional emissive sources.

We start by including the collimator effects to the acquisition process. If we consider the plane
P as located behind the collimator, W (rp, d̂) is the mean photons distribution in that plane when
the collimator is not present. Thus the distribution with the collimator in place is

Wc(rp, d̂) = W (rp, d̂)T (rp, d̂), (5.6)

where T (rp, d̂) is the transmittance of the collimator for photons traveling in direction d̂ and

striking plane P at point rp. To define T (rp, d̂) we need a geometrical model of the collimator. We
will consider a parallel-hole collimator with bores on a regular grid indexed by n. Let vector rn, in
the collimator plane, denote the center of the n-th bore. We define the function β(rp − rn) taking
value 1 over the open area of the n-th bore and 0 otherwise. If we neglect septa penetration, the
transmittance function T (rp, rn) will be 1 if the entrance and exit points of the photon lie on the
same bore and 0 otherwise. We know the exit point rp since the plane P is the exit plane. On the
other hand, we can find the entrance point re tracing backward from the exit point in direction
−d̂. Thus we have

T (rp, d̂) =
∑

n

β(rp − rn)β(re − rn), (5.7)

where the sum is over all bores in the collimator and the entrance point re is a 2D vector on the
collimator entrance plane. re = re(rp, d̂), depends on rp and d̂.
Therefore from equations (5.5) and (5.6) we have

Wc(rp, d̂) = T (rp, d̂)

∫ ∞

0

V (r − d̂l) exp

[

−
∫ l

0

µatt(r − d̂l′)dl′

]

dl (5.8)

Now we proceed to integrate Wc(rp, d̂) in all directions d̂ to obtain the function Ip(rp)

Ip(rp) =

∫ 2π

0

Wc(rp, d̂)dΩ(d̂). (5.9)

Ip(rp) represents the mean number of photons per unit area reaching P at position rp. To contex-
tualize with the image formation process, Ip is the mean distribution of photons impacting on the
scintillator crystal. This is not the same as the distribution of photons detected on the scintillator
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crystal, since that will be affected by the crystal quantum efficiency, i.e. not all the impacting
photons are actually detected. From (5.8) and (5.9) we have

Ip(rp) =

∫ 2π

0

T (rp, d̂)

∫ ∞

0

V (r − d̂l) exp

[

−
∫ l

0

µatt(r − d̂l′)dl′

]

dldΩ(d̂). (5.10)

We make the change of variables r
′ = r − d̂l, which will allow us to express (5.10) in the general

form

Ip(rp) =

∫

R3

V (r)h(rp, r)dr. (5.11)

First we notice that

r
′ = r − d̂l ⇒ d̂ =

r − r
′

l
,

l = |r − r
′|,

and
l2dldΩ = dr

′.

Thus (5.10) can be rewritten as

Ip(rp) =

∫

R3

T

(

rp,
r − r

′

|r − r
′|

)

V (r′) exp

[

−
∫ |r−r

′|

0

µatt

(

r − r − r
′

|r − r
′| l

′

)

dl′

]

dr
′

|r − r
′|2 (5.12)

=

∫

R3

V (r′)T

(

rp,
r − r

′

|r − r
′|

)

exp

[

−
∫ |r−r

′|

0

µatt

(

r − r − r
′

|r − r
′| l

′

)

dl′

]

1

|r − r
′|2 dr

′

=

∫

R3

V (r′)h(rp, r, r
′)dr

′

with

h(rp, r, r
′) = T

(

rp,
r − r

′

|r − r
′|

)

exp

[

−
∫ |r−r

′|

0

µatt

(

r − r − r
′

|r − r
′| l

′

)

dl′

]

1

|r − r
′|2

To obtain (5.13) from (5.12) we must note that, since we are concerned by function Ip on the
plane P, i.e. z = zp, the vectors r = (x, y, zp) and rp = (x, y) specify the same point. Therefore
we have h(rp, r, r

′) = h(rp, r
′) and can rewrite (5.12) as

Ip(rp) =

∫

R3

V (r)h(rp, r)dr. (5.13)

This transformation is a linear mapping of the 3D function V (.) to the 2D function Ip(.). The
function h(rp, r) is the response at point rp in the collimator exit plane to a point source at r in
the 3D space. The integral is over R

3, although V (r) is non-zero only inside the volume of interest
V.

Now the following steps are related to the count and location uncertainty for each photon, i.e.
the probability that the photon is actually detected, and in that case, in which location. We can
describe the location estimation process with the conditional probability density function p(r|rp),
where rp is the photon impact position in the scintillator crystal (plane P) and r is the photon
position estimated by the camera (plane D). Thus we can find G(r) as

G(r, ǫ) = ηPacc(ǫ)

∫

R2

p(r|rp)Ip(rp)drp (5.14)

= ηPacc(ǫ)

∫

R2

p(r|rp)

∫

R3

h(rp, r)V (r)drdrp

= ηPacc(ǫ)

∫

R2

∫

R3

p(r|rp)h(rp, r)V (r)drdrp,
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where η is the detector quantum efficiency -modeling the probability of a photon impacting on
the scintillator crystal actually being detected- and Pacc(ǫ) is the probability of the photon being
inside the energy window (depending on its impact energy ǫ). We can rewrite equation (5.14) as

G(r, ǫ) =

∫

R3

hT (r, r, ǫ)V (r)dr, (5.15)

with

hT (r, r, ǫ) = ηPacc(ǫ)

∫

R2

p(r|rp)h(rp, r)drp.

The linear transformation in (5.15) accounts for the projection of 3D data to 2D, the collimator
non-ideal response, detection and location uncertainty introduced by the camera. The function
hT (r, r) is the sensitivity of the camera at the 2D point r to the emission coming from the 3D
point r. We recall that the scattered photons are assumed to be discarded.
Now we can proceed to find the mean photon counts in each sinogram pixel as

Gm =

∫

dm

∫

R3

∫

hT (r, r, ǫ)V (r)dǫdrdr (5.16)

=

∫

R3

∫

dm

∫

hT (r, r, ǫ)dǫdrV (r)dr

=

∫

R3

hm(r)V (r)dr,

with

hm(r) =

∫

dm

∫

hT (r, r, ǫ)dǫdr,

hm(r) being the sensitivity of pixel m to the 3D point r.

5.1.6. Experimental Validation

Distribution Tests

A series of tests were carried out to experimentally verify the proposed hypothesis of the photon
counts distribution. Pearson’s chi-square goodness of fit tests (see Appendix B) were performed
to verify whether the Poisson distribution is a reasonable hypothesis for photon counts in each
sinogram location. We start by the simplest case, a punctual emitting source and then test a
more complex case, an emitting sphere. For each case Q simulations are performed. For a given
simulation q, q = 1, . . . , Q, data consists of a set of M values Gq

m, m = 1, . . . ,M where the index
m represents a pair (detector element, angle) and Gq

m represents the number of photons detected
in the m-th data bin for the q-th simulation. Thus the hypothesis to test is that the set of Q
values {Gq

m}q=1,...,Q are Poisson distributed. If the null hypothesis cannot be discarded with a
significance level of 0.05, we assume that the Poisson distribution is a reasonable hypothesis for
the photon counts distribution in the given location m.

Simulations Description

Punctual Source - No effects The emitting source is an off-centered unit volume sphere (1 cc) in
a brain-like uniform attenuating sphere (µ = 0.15) of radius 7 cm, so that attenuation (scattering
and absorption) is simulated. However, scattered photons are discarded so that no scatter noise
is considered. The activity level and the length of the scan are set according to values provided
for real scans.

Scan duration: 30mins
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Mean brain volume: 1200ml

Approximately 25-30mCi (925-1110MBq) of radioactive tracer are injected to the patient
(patient of 70kg approx).

For perfusion tracers (HMPAO, ECD) approximately 7% of the doses reaches the brain.

Result: 1.458e-6 ci/cc tracer concentration in the brain. The acceptance angle (c.f. Section
4.2.1) is set to 4.5 degrees to simulate non-ideal collimation. To set the acceptance angle value
we considered real collimator parameters. The value is determined based on the parameters of an
hexagonal holes collimator designed for a resolution FWHM = 1.0 cm at distance 10.0 cm [33].
Projections are of 128 × 128 pixels with a pixel size of 0.22 × 0.14 cm. A total of 128 projections
are obtained in the range 0 − 360 degrees. Non-ideal detection is not simulated. A total of 1000
simulations are performed.

Punctual Source - Effects The simulation is set as in the previous case but scattered photons
are not discarded (scatter noise is included) and non-ideal detector effects are simulated. A total
of 1000 simulations are performed.

Sphere - No Effects The emitting source is an off-centered sphere of radius 5 cm, in a brain-
like uniform attenuating sphere of radius 7 cm, so that attenuation (scattering and absorption)
is simulated. The activity level and scan length are set as for the punctual source case. The ac-
ceptance angle is set as in the previous case to 4.5 degrees to include non ideal collimator effects.
Projections are of 128 × 128 pixels with a pixel size of 0.22 × 0.14 cm. A total of 128 projections
are obtained in the range 0 − 360 degrees. A total of 200 simulations are performed. Note that
the number of simulations is significantly reduced compared to the previous case since the sphere
simulation is much more time consuming than the punctual source one.

Sphere - Effects The simulation is set as in the previous case but scattered photons are not
discarded (scatter noise is included) and non-ideal detector effects are simulated. A total of 200
simulations are performed.

Evaluation and Results

For each sinogram valid location, Pearson’s goodness of fit test (c.f. Appendix C) was per-
formed considering the corresponding 1000 or 200 samples (depending on the tested configuration).
By valid location we mean those voxels that are part of the sinogram sinusoid, i.e. not part of
the background. For all the tested configurations, punctual source and the emitting sphere with
and without effects, the null hypothesis cannot be discarded in 95% of the tested locations. Since
the test significance level is 0.05, we conclude that the Poisson distribution hypothesis cannot be
rejected in all the studied cases. Table 5.1 shows the exact percentage of locations where the null
hypothesis cannot be rejected for each tested configuration.

Attenuation effects, i.e. scatter and absorption, were simulated in all the studied cases. This
way we find that photon counts follow a Poisson distribution even on the presence of attenuation
effects. The same outcome is found when adding scatter noise. These results suggest the validity
of the model proposed for the first stage (Section 5.1.3). Regarding the camera effects, non-ideal
detector effects were simulated. Since the simulated non-ideal response is only partial (not all
non-ideal effects are included) we conclude that up to the limits of the simulation, the non-ideal
camera response does not change the Poisson character of the photon counts distribution. This
result is in line to validate the proposed model for the second stage (Section 5.1.3).

46



Punctual Source Sphere

No-Effects Effects No-Effects Effects

Null Hyp. No Rej. (%) 94.86 94.98 95.00 94.91

Table 5.1: Distribution test results. Percentage of the tested cases where the null hypothesis cannot be
discarded with a significance level of 0.05.

Statistical Dependence Tests

We perform statistical dependence tests in order to validate the hypothesis of independence
between counts in different sinogram locations. Strictly speaking independence cannot be exper-
imentally verified. Instead certain statistical dependence relationships can be tested, e.g. linear
relationships (correlation tests), monotonic relationships (rank correlation tests). With the latter
we can verify whether or not data is statistically dependent according to the specific tested rela-
tionship, but we will not be able to say that variables are independent. As will be shown in Section
7, we are interested in denoising sinograms before reconstruction to improve the reconstructed im-
age quality. Indeed that is one of the aims motivating the noise statistical characterization. Since
the method proposed to perform sinograms denoising is based on the hypothesis of uncorrelated
noise, we are interested in verifying this kind of statistical dependence. In that sense we decide
to use Spearman’s and Kendall’s rank correlation tests, since they allow to test for monotonic de-
pendence, therefore including correlation (linear relationship) but not only restricted to it. These
tests are a good trade-off between simplicity and accounting for not only linear relationships.
Spearman’s and Kendall’s rank correlation coefficients measure the extent to which, as one vari-
able increases, the other variable tends to increase, without requiring that increase to be linear.
Permutation tests can then be used to test the significance of the rank correlation value against
the null hypothesis of non-correlation. These kind of tests are non-parametric, since no specific
distribution is assumed over the variables. For more details see Appendix C.

We start by the simplest case, a punctual emitting source and then test a more complex
case, an emitting sphere. For each test, Q simulations are performed. For a given simulation q,
q = 1, . . . , Q, data consists of a set of M values Gq

m, m = 1, . . . ,M where the index m represents a
pair (detector element, angle) and Gq

m represents the number of photons detected in the m-th data
bin for the q-th run. To compute the rank correlation coefficients we will only consider voxels m
lying inside the sinogram sinusoid, i.e. we exclude background voxels. Global and local statistical
dependence are studied. By global we understand all pairwise dependence2, i.e. the statistical
dependence between the counts in every pair of locations, given by

statDep(Gi, Gj) ∀(i, j) i, j = 1, . . . ,M. (5.17)

For example, for the Spearman’s rank correlation coefficient, Equation (5.17) becomes

ρ(Gi, Gj) =

∑Q
q=1(G

q
i − Ḡi)(G

q
j − Ḡj)

√
∑Q

q=1(G
q
i − Ḡi)2

∑

q(G
q
j − Ḡj)2

, (5.18)

with Ḡi = 1
Q

∑Q
q=1 Gq

i .
On the other hand, by local dependence we mean the dependence of a given variable with its
neighbors, given by

statDep(Gi, Gj) ∀i = 1, . . . ,M, j ∈ neighbourhood(i).

2All pairwise dependences are considered when the number of variables is treatable. Otherwise, a percentage of
all the possible combinations is tested.
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where Equation (5.18) remains valid for the Spearman coefficient, but variables Gj are restricted
to a neighborhood of Gi.

Simulations Description

Punctual Source - No Effects Same configuration as in the distribution test case (punctual
source - no effects). 1000 simulations are performed.

Punctual Source - Effects Same configuration as in the distribution test case (punctual source
- effects). 1000 simulations are performed.

Sphere - No Effects Same configuration as in the distribution test case (sphere no - effects).
200 simulations are performed.

Sphere - Effects Same configuration as in the distribution test case (sphere - effects). 200
simulations are performed.

Evaluation and Results

In order to simplify the global statistical dependence computation, we decide to compute
all pairwise correlations between 1000 variables randomly chosen, and repeat the experiment A
times, with A depending on the number of total voxels and assuring that the 30% of the total
variables are tested. The only exception is the Punctual source - No effects case, where all pairwise
correlations have been evaluated since the total number of variables is manageable. For each run
a, a = 1, . . . , A, the rank correlation coefficient (Spearman’s or Kendall’s) is computed pairwise
between the 1000 randomly chosen variables (including the Q realizations of each variable obtained
from the Q simulations),

statDepa(Gi, Gj) ∀(i, j) i, j = 1, . . . , 1000,

and the percentage of significantly correlated variables (statDep(%)) is computed as

statDepa(%) =
total of significantly correlated variables

total tested correlations
,

with (total tested correlations = A(A − 1)/2), considering that the rank correlation coefficient is
symmetric (statDepa(Gi, Gj) = statDepa(Gj , Gi)). Then, we compute the mean and standard
deviation of the statDepa(%) indicator for the A runs as

mstatDep =
1

A

A∑

a=1

statDepa(%),

stdstatDep =
1

A

A∑

a=1

(statDepa(%) − mstatDep)2.

For the local dependence case, the neighborhood is defined by the parameters n, m and p, the
window size in each direction is (2n+1), (2m+1), (2p+1) with directions representing: x = bin,
y = slice and z = angle. The statistical dependence is then evaluated between the central position
and its neighboring locations. The experiment is repeated in B randomly chosen locations, with
B being 30% of the total considered variables and n = 4, m = 3, p = 4. The rank correlation
coefficient (Spearman’s or Kendall’s) between each location b and each of its neighbors is computed
as

statDep(Gb, Gj) ∀b = 1, . . . , B, j ∈ neighbourhood(b).
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Punctual Source Sphere

Stat. Dep. (%) No-Effects Effects No-Effects Effects

global
Spearman 4.95 ± 0.05 4.99 ± 0.05 5.00 ± 0.03 5.00 ± 0.03
Kendall 4.94 ± 0.05 4.99 ± 0.05 4.98 ± 0.03 4.98 ± 0.03

local
Spearman 5.48 ± 1.62 5.43 ± 1.50 5.19 ± 0.99 5.19 ± 0.99
Kendall 5.47 ± 1.62 5.42 ± 1.50 5.17 ± 0.99 5.16 ± 0.98

Table 5.2: Statistical dependence experimental results for the Spearman’s and Kendall’s rank correlation
tests.

The percentage of neighboring variables significantly correlated to b (nStatDep(%)) is computed
as

nStatDepb(%) =
total of neighbours significantly correlated to b

total neighbours
.

Then, we compute the mean and standard deviation of the nStatDepb(%)) indicator for the B
locations as

mnStatDep =
1

B

B∑

b=1

nStatDepb(%),

stdnStatDep =
1

B

B∑

b=1

(nStatDepb(%) − mnStatDep)2.

Table 5.2 shows the obtained results for the four tested configurations. For each configuration
we present the corresponding global (mStatDep ± stdStatDep) and local (mnStatDep ± stdnStatDep)
statistical dependence results for both considered coefficients, Spearman’s and Kendall’s. For all
the studied configurations, for both global and local analysis, the percentage statistical dependence
is around 5%. Some cases present more variance than others, but the worst case is 7% (local
dependence for the Punctual source - No effects case). Given that the statistical dependence
significance tests have a significance level of 0.05, we conclude that the hyphotesis of statistial
independence cannot be rejected, for all the configurations and in both cases, global and local
dependence. The latter (local dependence) is the most critical one, since given the characteristics
of the sinogram formation process the most probable statistical dependence is local dependence.
This way we can conclude that the hypothesis of uncorrelated sinogram pixel values cannot be
rejected.

49



5.2. Tomographic Images Characterization

In the literature we find many works on tomographic images statistical characterization for
various image reconstruction algorithms [34, 35, 36, 37, 36, 38, 39, 40, 41]. In general, these anal-
ysis compute first and second order statistics of the image but do not propose a distribution law
for it. They are usually focused on correlation analysis, verifying the image correlation matrix
characteristics. Depending on the reconstruction algorithm, these approaches study the image
noise evolution with parameter variation, with increasing iteration number, etc. We are interested
in image characterization after osem reconstruction since, as mentioned in previous sections, this
algorithm is widely used in clinical applications. In [8], Barrett et al. present a detailed statistical
description of tomographic images for ml-em reconstruction. They show that, up to an approxi-
mation, the reconstructed image follows a multivariate log-normal law. In section 5.2.1 we present
this approach. Next, in Section 5.2.2, we present the extension of Barrett et al. work, proposed
by Soares et al. [42], to images reconstructed using the osem algorithm.

5.2.1. Image characterization after ML-EM reconstruction

As described in Section 2.4.2, the ml-em algorithm is an iterative algorithm that produces a
sequence of estimates of an unknown object that converges to its ml estimate. We are interested in
knowing noise characteristics in the reconstructed image, i.e. how sinograms noise is transformed
by the ml-em reconstruction method. Unlike for the fbp case, a closed form for the reconstruction
noise cannot be found for the ml-em estimation. Barrett et al. [8] present an approach to describe
noise properties in an ml-em reconstruction. They propose a general theoretical formulation were
two basic approximations are made. Experimental validation of both, theory and approximations,
is presented in [32]. We present a brief summary of the formulation proposed by Barrett et al.
and refer the reader to the original article for further details.

Let us start by introducing some notation and statistical characterization of the variables.
Following notation introduced in Section 5.1.1, the unknown object is represented by a set of N
volume elements each of which having constant value Vn, n = 1, . . . , N . This value represents
the average number of gamma-rays emitted from that volume element during the study period T .
The volume is represented by the N × 1 column vector V , where Vn is the n-th component of V .
Sinogram data is represented by the M ×1 column vector G, with Gm its m-th component. Index
m = 1, . . . ,M represents all possible combinations of projection angle and detector element. Gm

represents the number of detected photons in data bin m. Note that V is deterministic and G is a
random variable. As shown in Section 5.1, for a given V , G components are independent Poisson
random variables.

The M×N matrix H is the projection matrix. Each component [H]mn represents the probabil-
ity that a gamma-ray emitted by the volume element n is recorded in data bin m. The projection
matrix H can model the non-idealities affecting detection. See Section 2.4.2 for a description of
them. Thus the mean value G of gamma-rays recorded, conditioned to a certain V is

G = HV.

We define an M × 1 noise vector N ≡ G − G, so that

G = HV + N.

By construction, the expected value of N is zero. On the other hand, since G components
are independent Poisson distributed random variables (for a given V ), N components are also
independent and Nm variance is the conditional mean of G, that is [HV ]n. To simplify notation,
Barrett et al. introduce a component-operation notation under which, if a and b are N ×1 vectors,
and A is an M × N matrix, we have

[ab]n ≡ anbn
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[a/b]n ≡ an/bn

[ln a]n ≡ ln(an)

but

[Aa]m =
N∑

n=1

Amnan.

Since the ml-em algorithm correction factor is multiplicative, it is useful to take logarithms in
the ml-em main iteration formula. Taking logarithms, Equation (2.8) in component-operation
notation is

Ŷ(k+1) = Ŷ(k) + ln

[
1

s
HT

(
G

HV̂ (k)

)]

, (5.19)

where

Y(k) ≡ ln[V̂ (k)]. (5.20)

The conditional expectation value of Y(k) is defined as

E(Y(k)|V ) ≡ ln(A(k)), (5.21)

and the deviation of Y(k) from its expected value as ǫ(k), so that

Y(k) = ln(A(k)) + ǫ
(k). (5.22)

Let us now introduce the first approximation, namely Approximation 1, which assumes that the
noise in the reconstruction will be small compared to the mean reconstruction. To account for this,
the image at the k-th iteration is expanded about the ensemble average image for that iteration
and only linear terms in the fluctuation are significant.

V̂ (k) = A(k) exp(ǫ(k)) ≃ A(k)[1 + ǫ
(k)]. (5.23)

Thus, if Approximation 1 holds we have

V̂ (k) = A(k) + δ
(k), (5.24)

with

δ
(k) ≃ A(k)

ǫ
(k). (5.25)

We can then assume ǫ(k) ≪ 1 when the noise in the reconstruction δ
(k) is small compared to

the mean reconstruction A(k). In [32], the authors show a quantitative assessment of the validity
range of this approximation. The approximation is in general reasonable, but tends to be more
doubtful when the iteration number increases or the number of counts in the image is small, since
higher noise levels are present in these cases.
The second approximation is not strictly necessary for the final noise characterization but sim-
plifies the operations. It states that after a few iterations, the projection of the current estimate
HA(k), will closely resemble the noise free projection HV . This approximation is also experimen-
tally verified in [32].

Under Approximation 1 and Approximation 2, equation 5.19 becomes
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Ŷ(k+1) = ln(A(k+1)) + ǫ
(k+1)

= ln(A(k)) + ǫ
(k) + ln

{
1

s
HT

[
HV

HA(k)

]}

+
1

s
HT

[
N

HA(k)

]

− 1

s
HT

[
[H(A(k)ǫ(k))]

[HA(k)]

]

.

Equating random terms and non-random terms separately,

ln(A(k+1)) = ln(A(k)) + ln

{
1

s

HV

HA(k)

}

, (5.26)

and

ǫ
(k+1) = ǫ

(k) +
1

s
HT

[
N

HA(k)

]

− 1

s
HT

[
[H(A(k)ǫ(k))]

[HA(k)]

]

. (5.27)

It is interesting to notice from Equation (5.26) that the ensemble mean image can be obtained by
performing a reconstruction with noise-free data G ≡ HV . On the other hand, Equation (5.27)
shows how to obtain the random noise in the (k + 1) estimate, based on the noise from data N
and the previous noise estimate ǫ(k).

After some operations it can be seen that ǫ(k) can always be written as a linear transformation
of the original data noise N

ǫ
(k) = Z(k)N, (5.28)

where Z(k) is an N × M matrix satisfying a recursion relation

Z(k+1) = D(k) + [I − C(k)]Z(k),

which depends on: the iteration number k, the object V , the system projection matrix H and the
noise-free estimates A(k). See Appendix D for the complete expressions of C(k) and D(k).
We are mostly interested in the statistical properties of ǫ(k), which can be determined from Equa-
tion (5.28). From Equation (5.28) and knowing that E(N|V ) = 0, the conditional expected value
is

E(ǫ(k)|V ) = 0.

The marginal probability density for any particular component of vector ǫ(k) can be determined
invoking the central-limit theorem. Since at any iteration k the components of ǫ(k) are a linear
combination of a large number of independent random variables (the components of vector N)
it follows from the central-limit theorem that each of these components is normally distributed.
Another way of achieving the same result is noticing that each component of vector G is Poisson
distributed, which in the case of a large expected value can be well approximated by a Gaussian
distribution. Thus if the number of detected photons is sufficiently high for each component (even
10 or so) we can say G is a vector of independent Gaussian distributed random variables. In
that case, each component of N is also normally distributed and equation (5.28) says that each
component of ǫ(k) is normally distributed. Furthermore, for any of the two previous arguments,
any linear combination of the components of ǫ(k) is normally distributed. This way all marginal
probability densities derivable from the full multivariate density on ǫ(k) must be normal, which is
only possible if the multivariate density is Normal. Thus we have

p(ǫ(k)|V ) =
1

(2π)N |K(k)
ǫ |2

exp

[

−1

2
(ǫ(k))T [K(k)

ǫ ]−1(ǫ(k))

]

,

where K
(k)
ǫ is the covariance matrix for ǫ(k) and |K(k)

ǫ | is its determinant. K
(k)
ǫ is given by
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K(k)
ǫ = Z(k)K[Z(k)]T , (5.29)

with K the covariance matrix of the data noise N.

Up to this point we have found a full multivariate statistical description of the noise ǫ(k) in
the logarithm of the reconstruction at the k-th iteration. We are now interested in the statistical
description of the reconstruction V̂ (k) itself.

The conditional expected value of V̂ (k) follows from equations (5.24) and (5.25), within Ap-
proximation 1

E(V̂ (k)|V ) = A(k). (5.30)

Given that the logarithm of V̂ (k) follows a multivariate Normal law, V̂ (k) must follow a multivariate
log-normal distribution. Thus we have

p(V̂ (k)|V ) = J(V̂ (k))[(2π)N |K(k)
ǫ |]−1/2

exp

[

−1

2
[ln(V̂ (k)) − ln(A(k))]T [K(k)

ǫ ]−1[ln(V̂ (k)) − ln(A(k))]

]

,

where J(V̂ (k)) is the Jacobian of the transformation from Y(k) to V̂ (k), given by

J(V̂ (k)) =
N∏

n=1

1

|V̂ (k)|
.

Every component of vector V̂ (k) follows a univariate log-normal law.
Up to Approximation 1, the covariance matrix of V (k) is equal to that of δ

(k). Thus from (5.25)
we have,

[K
(k)
δ

]mn = A(k)
m A(k)

n [K(k)
ǫ ]mn.

An important case is m = n which gives the variance of V (k) components. For that case we have,

var{V̂ (k)
n |V } = [A(k)

n ]2[K(k)
ǫ ]nn. (5.31)

Note that since the variance of V (k) depends on [A
(k)
n ]2, bright image regions will have high variance

while dark regions will have low variance. However, it is not correct to say that the variance is pro-

portional to the square of the mean since [K
(k)
ǫ ]nn also depends on the object (see equation (5.29)).

Analyzing the asymptotic case, as k → ∞, we can see that

Z(k+1) = Dk + [I − C(k)]Z(k) → Z(k).

Hence, if C(k) is non-singular
Z(∞) = [C(∞)]−1D(∞),

and from (5.29) and (5.31) we have

var{V̂ (∞)
n |V } = [A(∞)]2

∑

m

{[C(∞)]−1D(∞)}2
nm[HV ]m.

We find that the term [C(∞)]−1 is the one that accounts for the large variance -noise- amplification
for large iteration values. Therefore imaging systems for which C(∞) is poorly conditioned will
amplify noise more than those for which it is well conditioned.
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To summarize, the analysis presented here gives expressions for the mean vector, the covari-
ance matrix and the multivariate probability density function of the reconstructed image. These
values depend on the imaged object, the imaging system projection matrix H and the iteration
number. If Approximation 1 is valid, i.e. the noise in the reconstruction is small compared to the
mean reconstruction, the reconstruction noise must follow a multivariate log-normal law. Another
interesting result is that the variance at each image point depends on the square of the mean
image at that point. This way brighter areas present higher variance while the opposite occurs for

dark regions. However, the dependence on the mean image is not only quadratic since K
(k)
ǫ also

depends on the mean image. This also implies a much more local noise than in the case of fbp

reconstruction, where the variance tends to be uniform over the reconstructed image.

5.2.2. Extension to OSEM

In the previous section we studied the noise properties of the reconstructed image for the ml-

em algorithm. Now we are interested in extending this analysis to the osem algorithm. We would
like to confirm whether the description found for noise reconstructed by the ml-em algorithm can
be extended to osem and under which conditions.

Soares et. al present in [42] the extension of the work of Barrett et al. [8] for the osem algo-
rithm. In [43] they present an experimental verification of the proposed theory. Following the same
ideas presented in [8] it can be shown [42] that for the osem algorithm the noise in the logarithm
of the reconstruction can be written as a linear transformation of the noise in the projection data,
i.e. equation (5.28) is still valid for osem. The only difference is that matrix Z(k) now depends
also on the subset of projections considered for the iteration k.

Below we present a summary of the steps leading to the previous result. Since the deduction
is very similar to that described above we will refer to previous comments whenever it is possible.

The osem algorithm in component-operation notation can be expressed as

V̂ (k+1) =
V̂ (k)

sq
HT

m

(
G

HV̂ (k)

)

, (5.32)

where data projections are divided into Q disjoint subsets {Sq}Q
q=1, Hq is the subset-dependent

projection matrix

(Hq)mn =

{
(H)mn q ∈ Sq

0 otherwise

and the subset-dependent projection normalization vectors {sq}Q
q=1 are given by

{sq}Q
q=1 = HT

Q1,

with 1 a column vector with all its entries equal to one. It is important to remark that in this
formulation, one iteration of the osem algorithm is a single pass through one subset of the data.
The original osem formulation [14] considers one iteration as complete pass through all of the
subsets.

Taking logarithm on both sides of Equation (5.32), we have the osem version of Equation
(5.19)

Ŷ(k+1) = Ŷ(k) + ln

[
1

sq
HT

q

(
G

HV̂ (k)

)]

, (5.33)

where
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Y(k) ≡ ln[V̂ (k)], (5.34)

and the conditional expectation of Y(k) is given by

E(Y(k)|V ) ≡ ln(A(k)). (5.35)

If we let ǫ(k) denote the fluctuation of Y(k) from its mean value

Y(k) = ln(A(k)) + ǫ
(k). (5.36)

Now taking exponentials on both sides of (5.36) yields

V̂ (k) = A(k) exp(ǫ(k)),

which under Approximation 1 can be written as

V̂ (k) ≃ A(k)(1 + ǫ
(k)).

Back to Equation (5.33), up to Approximation 1, the term G

HV̂ (k)
can be written as

G

HV̂ (k)
≃ HV

HA(k)
+

N

HA(k)
− (HV )(H(A(k)ǫ(k)))

(HA(k))(HA(k))
, (5.37)

Then, defining

P (k)
q = HT

q

HV

HA(k)

W(k)
q = HT

q

N

HA(k)

R(k)
q = HT

q

(HV )(H(A(k)ǫ(k)))

(HA(k))(HA(k))
.

Equation (5.33) rewrites

Ŷ(k+1) = Ŷ(k) + ln

[
1

sq
(P (k)

q + W(k)
q − R(k)

q )

]

(5.38)

= Ŷ(k) + ln

(

P
(k)
q

sq

)

+ ln

(

1 +
W(k)

q − R(k)
q

P
(k)
q

)

. (5.39)

With Approximation 1 (ln(1 + x) ≃ x), Equation (5.39) becomes

Ŷ(k+1) = Ŷ(k) + ln

(

P
(k)
q

sq

)

+
W(k)

q

P
(k)
q

−
R(k)

q

P
(k)
q

P (k)
q .

Equating for the random and non-random terms separately gives

ln(A(k+1)) = ln(A(k)) + ln

[
1

sq
HT

q

(
HV

HA(k)

)]

,

and

ǫ
(k+1) = ǫ

(k) +
W(k)

q

P
(k)
q

−
R(k)

q

P
(k)
q

. (5.40)

Equation (5.40) can be rewritten as

ǫ
(k+1) = Z(k)

q N, k = 1, 2, . . . ,

55



with Z
(k)
q satisfying the recursion relation

Z
(k+1)
q′ = D(k)

q + [I − C(k)
q ]Z(k)

q , k = 1, 2, . . . ,

with q = k + 1, q′ = ((k + 1) mod Q) + 1 and Z
(1)
2 = D

(0)
1 . See Appendix D for the complete

expressions of C
(k)
q and D

(k)
q .

The relation between q′ and k ensures that the subsets 1, . . . , Q are used cyclically with iterations,
i.e. every Q iterations the subsets 1, . . . , Q are used again.

Finally we find for osem the same result as for the ml-em case: under Approximation 1 the
noise in the logarithm of the reconstruction can be written as a linear transformation of the noise

in the projection data, with the only difference that the matrix Z
(k)
q also depends on the subsets

{Sq}Q
q=1. Hence, the same conclusions made for ml-em can be extrapolated for the osem case.

In particular, if Approximation 1 holds, the reconstructed image must follow a multivariate log-
normal distribution.

5.2.3. OSEM sensitivity to projection matrix

In the following we present some experiments performed in order to evaluate the sensitivity
of osem to the projection matrix. Since the projection matrix H is generally unknown and set
according to approximations of the camera characteristics and performance, we are interested in
evaluating how different the reconstruction result is when varying H. The osem version we are
using allows to include in H the camera blur, modeled as a Gaussian blur, attenuation and scatter
effects. The following experiments show the dependence of the osem reconstruction with changes
on H due to different camera blur configurations and different attenuation values. Attenuation is
assumed to be along the path normal to the camera from the considered pixel. A multiplicative
factor equal to ac = exp(−∑line attenuation factor) is applied to each voxel.

We performed the experiments using the NCAT brain phantom (Figure 4.1). The phantom
activity distribution (activity level in each phantom voxel) was set according to the real scan
mean activity levels deduced in Section 5.1.6. Specific brain regions were set to activity level
values below or above the mean according to the indication of an expert physician. This way a
more realistic brain activity distribution is achieved. A parallel hexagonal-holes collimator was
simulated. Collimator dimensions (thickness, hole radius, septal thickness) were set according to
a real collimator [33]. The detector is a two-layered detector with an energy resolution (FWHM)
of 10% and a reference energy of 140 keV. Attenuation effects are simulated and scatter noise is
included.

Since we are interested on knowing the reconstruction results dependence on H, the ground-
truth will be the reconstruction obtained with a defined parameter set and the results obtained
with variations of these parameters will be compared against it. The comparison indicator will be
the mse against the ground-truth image, computed within a mask defined as the non-zero voxels
in the latter. We also compute a relative mean error (rme), defined as the mean absolute error

over the mean reconstruction value, rme = mean(|gTruth - reconstruction|)
mean(reconstruction) . This indicator is useful to

have an idea of the relative mean error done on the reconstruction.

Camera blur

Table 5.3 shows the results obtained for different camera blur parameters. σ1 is the standard
deviation of the Gaussian function on the axial plane (the same value in both directions). σ2 is
the standard deviation of the Gaussian function on the coronal plane (the slices direction). The
ground-truth image is computed with σ1 = 3.02 and σ2 = 2.69. The rest of the parameters are
left fixed along the runs.
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σ1 σ2 mse rme

1.41 1.41 62.08 0.07
1.80 1.80 42.81 0.05
2.83 2.24 5.19 0.02
3.60 3.16 3.22 0.01
4.60 4.03 179.77 0.11
5.00 4.47 184.23 0.11
5.41 4.92 189.45 0.11
6.71 6.32 416.13 0.29
8.94 8.25 419.57 0.30

Table 5.3: Results for the evaluation of the osem reconstruction dependence with the projection matrix
H, camera blur effect. The ground-truth was generated with σ1 = 3.02 and σ2 = 2.69.
Note that the minimum mse value is achieved for σ1 = 3.60 and σ2 = 2.16, the closest to
the ground-truth example. The mse grows rapidly when the standard deviation values deviate
from those used in the ground-truth reconstruction.

Attenuation factor mse rme

0.02 117.76 0.71
0.03 61.41 0.43
0.04 18.18 0.19
0.07 120.11 0.29
0.09 686.7 0.50
0.10 1290.6 0.57
0.11 2242.2 0.64
0.12 3694.8 0.70

Table 5.4: Results for the evaluation of the osem reconstruction dependence with the projection matrix H,
attenuation effect. The ground-truth was generated with an attenuation factor 0.05. Note
that the minimum mse value is achieved for 0.04, the closest to the ground-truth example. The
results show a strong variability with the attenuation parameter.

As expected, the minimum mse value is achieved for σ1 = 3.60 and σ2 = 2.16, the closest to the
ground-truth reconstruction. Moreover, it is interesting to notice that the mse grows rapidly when
the standard deviation values deviate from those used in the ground-truth reconstruction. This
would mean that the dependence on H is not negligible and choosing the camera blur parameters
imprecisely may lead to incorrect results. The values obtained for rme show that the error in the
reconstruction may be considerable large for standard deviation values distant from the real ones.

Attenuation

Following the same procedure as in the previous case we studied the dependence on the atten-
uation parameter. Table 5.4 shows the obtained results. The ground-truth was generated with
attenuation 0.05. The results show a strong variability with the attenuation parameter. Thus, it
is important to have a reasonable estimation of the real attenuation coefficient of the object. In
the clinical practice, this calibration is performed using transmission scans.
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Application of the SPECT image

model to aid the diagnosis of
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Chapter 6

Epileptogenic foci detection

In this chapter we introduce the problem of epileptogenic foci localization, which finds major
application in the medically refractory epilepsy cases. A brief summary of the generally used local-
ization methods is presented in Section 6.2. Section 6.3 presents an a-contrario based localization
method proposed in [1]. Next, Section 6.4 introduces a new a-contrario localization approach,
including a background model based on the spect images characterization presented in Section
5.2.1, a combined local-global measurement and a multi-scale detection strategy. Finally, Section
6.5 presents an experimental validation of the proposed method using phantoms and the detec-
tion results obtained in 7 real cases. Results are compared against the old a-contrario detection
approach and the classical thresholding technique.

6.1. Epilepsy and the problem of epileptogenic zones local-

ization

“Epilepsy is a brain disorder involving repeated, spontaneous seizures of any type. Seizures
are episodes of disturbed brain function that cause changes in attention or behavior. They are
caused by abnormally excited electrical signals in the brain.” [44]

In some cases of epilepsy, the patient does not get better after trying different seizure drugs.
Those patients present medically refractory epilepsy. This type of epilepsy may have strong dis-
turbing effects in the daily life of the patient and, in particular, poor neuro-developmental outcomes
in children. Brain surgery to remove the abnormal cells causing the seizures is one of the options
in these situations. This technique requires a previous precise localization of the epileptogenic
zone (EZ), i.e, the brain zone causing the seizure.

Functional neuroimaging techniques, such as pet or spect, are useful for the task of EZ local-
ization and the study of the seizure propagation. They are used to analyze the regional cerebral
blood flow (rCBF) which presents defined patterns during seizures. At the beginning of the seizure,
the EZ presents high levels of rCBF, followed by a rCBF increase in connected circuits. After the
initial rCBF peak in the EZ, its rCBF decreases. Hipoperfusion patterns are also found in defined
regions, related to the seizure symptoms. The combination of functional studies and the seizure
symptoms help the specialist localize the EZ.

In order to perform the spect study, a radioactive tracer is administered to the patient by intra-
venous injection. Brain perfusion spect tracers are lipophilic substances with free diffusion across
the blood brain barrier that have a long retention time in the brain. Two 99mtechnetium(99mTc)-
labeled agents are most commonly used: 99mTc-HMPAO (hexamethylpropylene amine oxime) and
99mTc-ECD (ethylcysteinate dimer). The tracer distribution is proportional to the rCBF at the
moment of injection and stays stable up to 4 to 6 hours. Gamma rays emitted by the tracer are
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detected with a gamma camera about an hour after injection. After reconstruction, this produces
a 3D image of the rCBF distribution at the moment the patient was injected. An ictal spect is
obtained when the tracer is injected during a seizure; an inter-ictal spect is obtained in-between
seizures. Comparing these two spect studies helps identifying the possible EZ candidates: regions
with high rCBF during the seizure (in the ictal spect) that were not high in the normal state
(inter-ictal spect).

Figure 6.1: One slice of the ictal (left) and inter-ictal (right) spect scan of a refractory epilepsy patient.
Note that the comparison of the scans to detect the EZ candidates by visual inspection is not
simple. The same behavior appears in all slices. Images provided by the Center of Nuclear
Medicine of Hospital de Cĺınicas, Facultad de Medicina, Universidad de la República, Uruguay.

The comparison of the two studies is not an easy task. Visual comparison was initially used,
but the images differ too much to allow the detection of punctual activity differences by visual
inspection (see Figure 6.1). Then, various techniques have been developed, most of them based in
the subtraction of the two scans. Section 6.2 presents a brief summary of the proposed techniques.
Among other difficulties, one of the problems of comparing the two studies appears in the case
of late injections. When the injection for the ictal study is administered long after the beginning
of the seizure, the captured rCBF distribution wont present the EZ among the regions with the
highest activity levels. On the contrary, the EZ may appear with low activity level and zones
in the propagation circuit of the seizure may appear with the highest levels. In that case, the
detection of the zones with highest activity wont include the EZ but connected regions. Moreover,
it does not exist an absolute activity threshold defining an EZ. Given the subtraction of the ictal
and inter-ictal scans, the EZ or zones in the activation circuit of the seizure, will be among those
with highest activity levels. But, what is the threshold differentiating a real detection from a false
positive? Where do we set the threshold defining an EZ? What happens if we have the subtraction
of two inter-ictal scans? The EZ detection method should be capable of detecting nothing even if
the two images differ. In practice, an automatic detection method can only suggest EZ candidates
to the specialist, who combining the detection result with a-priori information, may conclude
where the seizure originates and which regions belong to the propagation circuits.

6.2. Proposed solutions

As presented in [1], two principal methodologies based on functional neuroimaging techniques
have been developed for EZ localization. The first one considers differences in the ictal/inter-ictal
comparison which are checked against a healthy normal database. These differences are used to
determine the normal expected variation in order to find regions which are outside of normal
parameters. To perform this comparison, spatial normalization is first used to wrap images to a
spect template [2]. This approach is problematic in that comparison against a normal database
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is not always valid. It cannot for example be used on children or patients with anatomical lesions.

The second approach compares ictal and inter-ictal images of the same patient. Database
information from other patients is not included. The most common method to localize the EZ is
to detect hyperperfusion regions on ictal/inter-ictal spect subtraction images by thresholding. A
global fixed threshold is used, usually proportional to the standard deviation of the gray values
in the subtraction image. Although the global thresholding technique has been evaluated and
proven successful in EZ localization [3], there are some disadvantages to this method. The global
approach is prone to corregistration, even when registration errors are low. Also high dependence
on precise masking is observed. Regarding the choice of the threshold value, despite being based
on clinical experience, it still lacks a solid statistical basis. Finally, a significant limitation of this
approach is that it always detects foci that represent EZ candidates, even in the case of consecutive
basal studies of the same subject.

In [1], we proposed a preliminary method that aims to determine detection thresholds from
ictal/inter-ictal images of the same patient, in a more rigorous framework. This method is based
on the a-contrario theory, a statistical framework developed by Desolneaux et al. [4]. Good results
were reported, with better defined activations in the EZ and less amount of false detections than the
classical thresholding technique. The proposed solution appears to be more robust to registration
errors than thresholding and less sensitive to masking errors. Positive results were also obtained
when evaluated on normal subjects.

6.3. A-contrario EZ detection

6.3.1. The a-contrario theory: basic concepts

The a-contrario theory was developed by Agnes Desolneux, Lionel Moisan and Jean-Michel
Morel [4] in the late nineties. This theory considers the Gestalt grouping laws (color, shape,
vicinity, etc) to determine the presence of a structure as a “strange” event under a randomness
hypothesis. The Helmholtz principle formalizes this concept. It states that we perceive no struc-
ture in a uniform random image, in other words, “we immediately perceive what could not happen
by chance”. Figure 6.2 exemplifies this phenomenon. Figure 6.2a shows 100 uniformly distributed
random points. This is a uniform random image and indeed we perceive no structure. Figure
6.2b shows the same random points and 34 additional aligned points. Now we perceive the points
alignment, which cannot happen by chance in the random image (i.e. under the randomness
hypothesis).

Assume that the atomic objects O1, . . . , On are present in an image and that k of them share
a common feature (e.g. same color, orientation, position). The following question arises: is this
common feature happening by chance or is it significant enough to consider that the group the
objects O1, . . . , Ok share some common relation? To answer this question we can think of how
would it be the feature distribution among the objects if it had been randomly and uniformly
assigned. Then, answer the question: is the current configuration probable under a hypothesis of
randomly assignment of the feature? If the answer is no, that proves a-contrario that a Gestalt
grouping process is at play, i.e. the configuration could not happen by chance and we perceive a
meaningful event. Desolneux et al. introduce in [4] the concept of ǫ-meaningful event,

Definition 1:

“We say that an event that is ǫ-meaningful if the expectation of the number of occurrences of
this event is less than ǫ under the a-contrario random assumption. When ǫ ≤ 1, we simply say
that the event is meaningful.”

This definition gives a generic criterion to determine the meaningfulness of an event. However,
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(a) (b)

Figure 6.2: According to the Helmholtz principle we perceive non casual alignments as large deviations
from randomness. On the left we have an image of 100 uniformly distributed random points.
No alignments are perceived. On the right 34 aligned points were added. The alignment is
perceived as it could not have happened by chance under the uniform distribution.

an adequate a-contrario model (randomness hypothesis) must be defined in order to apply it in
different situations. Linking Definition 1 and the Helmholtz principle, we find that if the latter is
true, we perceive events if and only if they are meaningful in the sense of Definition 1.

If we want to find the meaningfulness of the event “k out of n objects sharing the same feature”
according to Definition 1, we need to find an upper bound for the expected number of occurrences
of the event under the a-contrario assumption. The expected number of occurrences of the event
under the a-contrario assumption is called number of false alarms (nfa), since under the random
assumption no occurrences of this event should happen. The nfa of an event measures how
meaningful the event is. The smaller the nfa the more meaningful the event. The nfa is defined [4]
as the product of the probability of occurrence of the event under the a-contrario model (pfa,
probability of false alarm) and the number of all possible configurations of the searched gestalt,
i.e. the number of all of the forms in which we could find the searched configuration.

nfa , Ntestpfa. (6.1)

Since the nfa is an upper bound on the expected number of false alarms, according to Definition
1, an event for which nfa ≤ ǫ is ǫ-meaningful.

6.3.2. Application to EZ detection

The a-contrario EZ localization algorithm proposed in [1] is based on the one presented by
Grosjean and Moisan [45] for spot detection in 2D textured backgrounds. By spot we understand
a meaningful deviation from gray values in a certain neighborhood, whether positive (bright spot)
or negative (dark spot). No particular shape, neither defined edges, are assumed for the spots.
The method defines an a-contrario model for the ictal/inter-ictal subtraction image, and detects
bright spots contradicting the model, i.e. spots with a gray level too high to occur under the
a-contrario model. Those bright spots are the EZ candidates. As seen in the previous section, the
a-contrario model is a statistical model that describes typical configurations where the searched
structure is not present. In this case, the a-contrario model, also called background model, is
white Gaussian noise. For each spect scan, the model is defined by the random 3D image

(H0) : U = µ + σN, (6.2)

where µ and σ are real parameters and N is a 3D white Gaussian noise image (with zero mean
and unit variance). It is important to note that in the a-contrario framework, background models
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are not required to be fully realistic. However, it is important to ensure that if the image fully
complies with the background model, no structures are detected.

The application of the a-contrario theory also requires a measurement, made on the structures
to be detected, to measure the meaningfulness of the structure under the a-contrario model. Let
us consider the measurement m ∈ R. If the searched structure is more significant as m takes high
values, the weigh of significance is given by the probability pfa = P (M ≥ m), where m is the
observed measurement and M is the random variable corresponding to the distribution of m in
the background model. The nfa can then be computed according to Equation (6.1). This ensures
that if the image verifies the background model hypothesis, the average number of ǫ-meaningful
bright spots detected by chance is less than ǫ [4].

At each potential location two measurements are made: one in the ictal scan, m1, and the other
in the inter-ictal scan, m2. Bright spots are detected as significantly high values of m = m1 −m2,
which correspond to high contrast between the ictal and inter-ictal scan at the tested position.
They can be also seen as bright spots in the subtraction image. Let uictal and uinterictal be 3D
images. The linear measurements can be expressed as

m1(x, y, z) =

∫

R3

uictal(x − p, y − q, z − r)s(p, q, r)dpdqdr, (6.3)

m2(x, y, z) =

∫

R3

uinterictal(x − p, y − q, z − r)s(p, q, r)dpdqdr, (6.4)

with s a normalized ellipsoidal measurement kernel, where the ellipsoid radii are related to the 3D
image resolution. Let Mi(x, y, z), i = 1, 2, be the random variable representing the measurement
value mi(x, y, z). In order to compute the pfa, we need to know the distribution of Mi(x, y, z) in
the background model. From Equations (6.2), (6.3) and (6.4) it follows

Mi(x, y, z) = (U ∗ s)(x, y, z),

and thus M1 and M2 are both colored Gaussian noise. Since the distribution is stationary and
the measurements are invariant to translations, the detection thresholds will be exactly the same
at each position. Thus we can shorten the notation

Mi = U ∗ s = µ + σ 〈N, s〉 ,

where < ., . > denotes the inner product. It can be shown [45] that σ 〈N, s〉 is normally distributed
with zero mean and standard deviation σ ||s||. Then Mi ∼ N(µ, σ2||s||2) and M = M1 − M2,
subtraction of two independent Gaussian variables, satisfies M ∼ N(0, 2σ2||s||2). Finally, the nfa

is computed as

nfa = |T |P (M ≥ m) = |T |Φc

(
m1 − m2

σ‖s‖

)

(6.5)

= |T |Φc

(
(m1 − m2)

√
2πr1r2r3

σ
√

3

)

, (6.6)

where |T | is the number of tested locations, ri are the ellipsoid radii and Φc denotes the tail of
the Normal distribution.
The nfa values are computed in a defined grid T . All spots centered in voxels having an nfa ≤ ǫ
as considered meaningful detections and therefore EZ candidates. The a-contrario threshold ǫ is
set to 1, in order to have at most one false detection.

One of the main advantages of the a-contrario approach is that, unlike the classical thresh-
olding, the threshold is not arbitrary but depends on the chosen model. In this case, the model
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parameter to be estimated is σ. In [1], σ is computed as the gray level variance of the inter-ictal
scan inside a brain mask. This approach has an important drawback, the resulting threshold is
too restrictive and in some cases the detections are very few or even no detection is found in cases
of know EZ presence. The threshold is too restrictive because computing the variance globally in
the inter-ictal scan includes gray level variations that are not present in the subtraction image.
For example, two regions of different gray level that match in the ictal and inter-ictal scans, will
be mapped to zero in the subtraction image. Thus, they have different value (contribute to the
variance computation) in the inter-ictal scan but they are equal in the subtraction image. Finally,
using the variance of the inter-ictal scan to model the gray level variation of the subtraction image
may be too restrictive.
In the following section we present a new a-contrario detection approach, based on a new back-
ground model which better suits the spect images characteristics. The new method aims to
overcome the shortcomings of the present approach, avoiding the rule out of true EZ at the cost
of increasing the false positives.

6.4. A-contrario EZ detection: new approach

The spect images characterization presented in Section 5.2.1 inspires the proposal of a new
background model for the a-contrario EZ localization. A new detection strategy is also proposed,
with a measurement combining global and local information and including a multi-scale approach.

6.4.1. The new model

Scan model

In Section 5.2.1 we presented the characterization of ml-em reconstructed tomographic images
proposed by Barrett et al. [8]. The presented analysis gives expressions for the mean vector, the
covariance matrix and the multivariate probability density function of the reconstructed image
V̂ (k), given the scanned object V . The reconstructed images in our case are the ictal and inter-
ictal spect scans. We recall here the form of the probability density function

p(V̂ (k)|V ) = J(V̂ (k))[(2π)N |K(k)
ǫ |]−1/2

exp

[

−1

2
[ln(V̂ (k)) − ln(A(k))]T [K(k)

ǫ ]−1[ln(V̂ (k)) − ln(A(k))]

]

. (6.7)

This function depends on the object being scanned V , the imaging system projection matrix
H and the iteration number of the ml-em algorithm k. If the introduced approximation is valid
(the noise in the reconstruction is small compared to the mean reconstruction), the reconstruction
must obey a multivariate log-normal law. Therefore, under this approximation, the logarithm
of the scan obeys a multivariate normal law. Besides, it was found that the variance at
each image location depends on the mean image value at that point, thus the variance is spatially
non-stationary, contrarily to what was wrongly assumed in [1]. The spatial non-stationary nature
of the mean image values (which implies that of the variance) is caused by the non-homogeneous
characteristics of the object being scanned, in this case, the brain. The brain matter is not homo-
geneous and therefore the emission levels at different positions differ.

The previous result models the reconstructed image for a given scanned object V . Different
objects lead to different parameters of the probability density function given by (6.7). In our case,
the scanned object is the brain with the particular radiotracer distribution at the moment of in-
jection, and therefore the particular rCBF pattern at that moment. Different rCBF patterns give
different examples of V . For this reason, two functional images of the brain will never be equal,
even if both of them are taken in basal state. It is impossible to obtain two equal inter-ictal scans,
since the rCBF distribution in the brain depends on the brain activity which cannot be exactly
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reproduced. If we compare two inter-ictal scans of the same patient, we can see a basic structure
common to both images, and differences mostly in the borders of the inner shapes. See Figure 6.3
for an example. We may describe this variability through a random process V representing the
physiological behavior of the brain. A realization of this process is a given rCBF distribution, i.e.
an example of V . Then, each reconstructed image obtained form V can be modeled according to
Equation (6.7).

Figure 6.3: Left: One slice of two inter-ictal spect scans of the same patient. Right: Corresponding
slice of the subtraction of the two scans. Note the structure common to both scans and the
differences in the subtraction image. Images provided by the Center of Nuclear Medicine of
Hospital de Cĺınicas, Facultad de Medicina, Universidad de la República, Uruguay.

We may now raise the question about the form of the probability density function p(V̂ (k)), that
is, give a more general model which includes the variability of V and gives a probability density
function valid for all V . For that purpose we would need information about the physiological
behavior of the brain and how the different regions vary. Because we do not have access to that
information and such a model should be quite complicated, we chose to keep the dependence on
V and incorporate the idea of functional variability in a posterior analysis. This variability needs
to be considered for the EZ detection task since the difference between the inter-ictal and ictal
scans are not only the EZ but also the inherent variabilities of the functional differences between
the two studies.

Subtraction image model

Because we are interested in finding meaningful differences between the ictal and inter-ictal
scans, we will work with the subtraction image. As mentioned in Section 6.3.2, the background
model for the a-contrario detection using the subtraction image is given by the subtraction of two
inter-ictal scans. The normal variability of the scans is that of the subtraction of two inter-ictal
scans, since in that case we are sure that no EZ is included. If we had a large dataset of inter-ictal
scans of the patient, we could make a statistical model of the normal variability. That variability
is caused by the physiological process generating different V samples. Then, the EZ candidates
can be found as deviations from the normal behavior in the inter-ictal/ictal subtraction. However,
this is not the case and in general only one inter-ictal scan is available. For this reason, we are
forced to use the inter-ictal/ictal subtraction image to characterize the background model. We
make the assumption that the number of voxels belonging to EZ is small with respect to the brain
volume and therefore does not bias the results. If we consider the subtraction of the logarithm
of the scans, each voxel of the subtraction image is the difference of two independent normally
distributed random variables, and therefore also normally distributed. They are independent since
the inter-ictal and ictal scans are obtained at different moments. The voxels will remain spatially
correlated and non-stationary in the subtraction image. A correlation study was performed in 8
real scans which showed that correlation decays to almost zero within a neighborhood of radius
3×3×1 pixels (each of the 3D components). This correlation behavior was verified to be spatially
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stationary. Part of the structure of the images is lost with the subtraction. We can see it in Figure
6.3. In spite of this, the subtraction image remains spatially non-stationary since the borders
of the inner structures differ in each scan and give rise to spatially non-stationary gray levels
(and correspondingly non-stationary variance). Given that the non-stationarity is due to the non-
homogeneous nature of the brain and the inherent functional variabilities, it seems reasonable to
suppose local stationarity. The brain matter changes smoothly and the structure is mostly kept
in different realizations of V . Thus, we model the subtraction of the logarithm of the scans as
non-stationary, colored Gaussian noise. The marginal distribution of each voxel is also normal,
with different parameters for each voxel. In the following we will refer to the subtraction of the
logarithm of the ictal and inter-ictal scan as subtraction image.

6.4.2. The measurement

The second step in the a-contrario detection process is to precise the measurement to be used
for detection. As previously mentioned, we will use a combined local-global approach. The lo-
cal approach allows us to find locally meaningful regions, i.e. regions meaningfully bright with
respect to their context. The EZ does not have a specified shape. However, they are usually
spot-like regions. On the other hand, the global approach is essential for detection, since the
global comparison of gray level values is what let us identify feasible EZ candidates. The lo-
cal measurement identifies regions too bright for the context, which does not mean being globally
bright and therefore an EZ candidate. An EZ must be bright with respect to the rest of the volume.

Global measurement

As in the original version of a-contrario detection, the global measurement MG will be the
mean gray level value in an elliptical neighborhood centered on the tested voxel

mG(x, y, z) =

∫

R3

u(x − p, y − q, z − r)s(p, q, r)dpdqdr, (6.8)

with u the subtraction image and s the elliptical kernel. In order to evaluate whether the mea-
surement value mG is meaningful or not, we must answer the question: under the a-contrario
image model, which is the probability for the measurement variable MG to be higher than the
observed measurement value mG? If that probability is below a certain threshold we will say
that the tested region is meaningfully bright. To compute that probability, we should know the
probability density function of the gray level values in the subtraction of two inter-ictal images.
To be more precise, we should know the probability density function of the measurement image,
i.e. the convolution of the subtraction of the inter-ictal scans and the measurement kernel. From
the image model analyzed above, among other things (projection matrix, ML-EM iteration), the
gray level mG at a given voxel in the measurement image depends on the realization of the physi-
ological process for each scan, V1 and V2, and on the position on the scan x (non-stationarity due
to inhomogeneity of the brain). The probability of MG to be greater than mG verifies

P (MG ≥ mG) =

∫ ∞

mG

. . .

∫

p(MG|V1, V2, x)dV1dV2dxdMG.

To correctly estimate P (MG ≥ mG) we should have various realizations of V1 and V2, which
is not the case. We only have one ictal and one inter-ictal scans. Thus, we propose to use the
empirical histogram of the gray level values of the measurement image. The Gaussian model can-
not be used here since all the samples come from Gaussian distributions of different parameters.
The non-stationarity of the proposed Gaussian model invalidates its usage in a global approach.
However, we will use it for the local measurement model, since with the hypothesis of local sta-
tionarity, we can characterize the model locally.
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Local measurement

The local measurement mL is also given by Equation (6.9).

mL(x, y, z) =

∫

R3

u(x − p, y − q, z − r)s(p, q, r)dpdqdr, (6.9)

with u the subtraction image and s the elliptical kernel. Once again we rise the question: under the
a-contrario image model, which is the probability for the measurement variable ML to be higher
than the observed measurement value mL? For the local measurement, the colored Gaussian model
is valid since we can assume local stationarity for the mean and variance values. We assume that
in a neighborhood of the tested voxel, all samples are identically distributed. The measurement
image in this case (the given neighborhood) can also be modeled as colored Gaussian noise, since
it is the convolution of colored Gaussian noise with a measurement kernel. Thus, the voxels in the
neighborhood are used to estimate the parameters of the model. Therefore we have

P (ML ≥ mL) = Φc

(
mL − µL

σL

)

,

with Φc the tail of the normal distribution, µL and σL the mean and variance of the considered
neighborhood.

Combined measurement

Since the idea is to test both aspects, global and local at the same time, the measurements
are combined in a unique measurement. Despite the measurements are not independent, we can
say that if the global measurement distribution is computed based on a region much larger than
that of the local measurement, both probabilities can be considered independent. Note that if the
local probability is computed based on a region much smaller than the global one, knowing that
a region is locally meaningful does not say much about its global meaningfulness. On the other
hand, saying that a region is globally meaningful does not imply that that the region is meaningful
on its context (think of a large bright constant region). Finally the combined measurement is given
by

pfa = pfaG.pfaL.

6.4.3. Multi-scale approach

Because the EZ may present different sizes, a multi-scale approach is mandatory. The combined
measurement is computed for 3 different scales. Each scale defines the radii of the elliptical
measurement kernel s and the size of the neighborhood for the local measurement. At each tested
voxel, the nfa for each scale is computed using equation (6.1). Then, the most meaningful scale,
i.e. the one corresponding to the minimum nfa is chosen.

6.4.4. Number of false alarms

In [1], as in [45], the number of false alarms is computed as the product of the probability of
false alarms times the total number of tested voxels. For the new a-contrario detection method, the
total number of tested voxels is the summation of the tested voxels for all scales. This definition,
despite valid, is not the only option. Strictly speaking, according to the Proposition 2 presented
by Grosjean et al. in [45], the function

NFA(i, xi) = niP (Xi ≥ xi),

with (Xi)1≤i≤N is a set of random variables and (ni)1≤i≤N a set of positive real numbers, is a nfa

as soon as
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N∑

i=1

1

ni
≤ 1.

In particular, the function is a nfa if ni = N for all i, which is the case in the method proposed
in [1].

In a multi-scale approach it seems reasonable to use differentiated nfa thresholds for the scales.
We perform more tests of the smaller scale than that of the larger scale. Thus, we are increasing
the probability of finding a meaningful spot on the smaller scale. On the other hand, the proba-
bility of finding spots of different sizes depends on the image characteristics: scales closer to that
of the image model are more probable than others.

Burrus et al. introduce in [9] an innovative methodology to estimate the expectation of the
number of false alarms by mixing analytical computations and Monte-Carlo simulations. The basic
idea is to simulate various independent realizations of the background model and then perform
the detection method on the simulated images. Under the background model hypothesis, all the
detections are false positives. Thus the average number of detections can be taken as an estimation
of the expected value of false alarms. Then the multiplicative constants ni are set so that to have
less than ǫ false alarms. At each iteration, a detection is found when it verifies

P (Xi ≥ xi) ≤
ǫ

ni
= δi.

The procedure is performed iteratively until convergence of the δi values. In this manner,
the a-contrario threshold δi is set automatically and ensures ǫ-reliability. Moreover, the proposed
method allows to consider the differentiated computation of the nfa threshold for different cat-
egories. Categories are associated to differentiated tests, for example, the different scales in the
multi-scale approach. In [9], the authors propose to use the iterative procedure to estimate a
different threshold for each category. They argue that if an algorithm is ǫ

K -reliable for each of the
K tested categories, then it is ǫ-reliable in the complete test. The proof is straightforward using
the linearity of the expectation. If an algorithm makes less than ǫ

K errors in average for each
category, then it globally makes less than ǫ errors in average.

In the present work we combine the previous two approaches for the nfa thresholds computa-
tion. For each scale, we compute the nfa as the product of the pfa times the number of tested
voxels for that scale. Then we set ǫ = 1

K to perform the meaningfulness tests. Using the same
expectation linearity argument presented by Burrus et al., if we ensure that the algorithm makes
less than ǫ

K errors in average for each category, then it globally makes less than ǫ errors in average.
On the other hand, it was shown in [45] that the function nfa = Ntestpfa is a valid nfa when
Ntest is the number of tested voxels, which is therefore valid for the tests performed at each scale.

We found it not feasible in this case the application of the method of Burrus et. al as presented
in [9] since we find it unworkable to simulate samples of non-stationary noise according to the spect

scans subtraction characteristics. As previously mentioned (c.f. Section 6.4.1) for that purpose
we should have a statistical model of the spatial variation of the gray levels of the subtraction of
inter-ictal scans of the patient. A dataset of inter-ictal scans of the same patient would be needed.
The idea of mixing scans of different patients to make the model was previously presented[2],
but does not count with wide acceptance in the medical community since anatomical differences
between patients or even age (there are no databases for children) are non-negligible drawbacks.
Because the option of having several inter-ictal scans of the patient is usually not feasible, we
find it unworkable to develop a statistical model of the spatial variation of gray level values and
generate background model samples.
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6.5. Experiments

The previously described a-contrario detection method is tested on phantoms and on a dataset
of 7 patients with medically refractory epilepsy.

6.5.1. Simulations

The evaluation of the proposed method using phantoms is performed in first place as a sanity-
check of the proposed approach. It intends to verify that, under controlled conditions, the method
performs as expected. Detection performance is also compared against the previous a-contrario
detection approach [1] and the classical subtraction method [3].

Experiments are performed using the NCAT brain phantom (see Figure 4.1). The phantom
basal activity distribution (activity level in each phantom voxel) is set according to the indication
of a specialist. From that basal configuration, various basal phantoms are generated uniformly
varying the activity levels with a variation range of 10%. In order to simulate different seizures,
the activity levels in specific regions are increased according to the specialist indication. These
regions are chosen so that to be representative of real seizures. Three seizure configurations are
defined, with increasing level of complexity, which we will refer to as phantom 1, phantom 2 and
phantom 3. The ictal phantom for each patient is obtained firstly varying the activity levels on its
basal phantom (uniform variation 15%) and then increasing the activity levels of the correspond-
ing regions.

The spect sinograms of the phantoms are obtained using an utility of the osem package used
for reconstruction. This package allows not only to generate the reconstructed image from projec-
tions, but also generate projections from a given phantom. The simulated effects are the Poisson
nature of photon emission, camera blur and attenuation. The SimSET tool was not used in this
case for time constraints, but it would be interesting to perform the analysis using this tool and
incorporate other non-idealities of the acquisition process. The reconstruction is performed using
the osem algorithm.

It is important to notice that this evaluation does not take into account alignment issues that
always appear in real cases. Ictal and basal scans are never perfectly aligned in real cases as they
are in this test. In previous evaluations [1, 46], the a-contrario detection approach introduced
in [1] was shown to be robust to alignment problems as opposed to the classical subtraction
method which appears to be quite sensitive to alignments mismatch. The present sanity-check
does not intend to verify this aspect for the new a-contrario detection approach. However, it
would be interesting to include it in future evaluations. Despite not being strictly verified, given
the similarities to the old approach, we expect the new method to have a similar behavior in this
sense.

Phantom 1 This case corresponds to the activation of the left hippocampal formation. Four
activation levels are tested: 30%, 50%, 70% and 100%. For the 30% activation, the a-contrario
detection approach detects the EZ but not in all slices. It presents some false positives, which
can be seen in the subtraction image as highly activated regions. Figure 6.4 shows the detection
results for this case. In white are the correctly detected regions, in yellow the false negatives and
in red the false positives. The old a-contrario approach finds no detections in this case. Results
for the subtraction method are shown in Figure 6.5. It presents almost no false negatives but a
large number of false positives (more false positives appear in the slices not displayed). For the
50% activation case, the a-contrario approach increases the number of correct detections without
a major increase on false positives. See Figure 6.6. The old a-contrario approach still has no
detections. The subtraction method has no false negatives but the detection is quite imprecise.
See Figure 6.7. A similar behavior is seen for the 70% activation case. The a-contrario approach
continues to increase the correct detections, while the old a-contrario approach has no detections.
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See Figures 6.8 and 6.9. For the 100% activation case, the a-contrario approach has almost no false
negatives nor false positives. The old a-contrario approach behaves similar to the new approach,
but with a more precise detection (less false positives). The subtraction method continues to be
imprecise. See results in Figures 6.10, 6.11 and 6.12.

Figure 6.4: Phantom 1 - Activation level: 30%, Method: a-contrario. White: Correct detections.
Yellow: False negatives. Red: False positives. The EZ is detected but not in all slices. It
presents some false positives which can be seen as highly activated regions in the subtraction
image.

Phantom 2 This case corresponds to the activation of the left hippocampal formation and the
left parahippocampal gyrus. Three activation levels are tested: 20%, 40% and 60%. Neither the
new nor the old a-contrario approaches have correct detections for the 20% activation approach.
The new approach has one false positive. The substraction method detects a small region of the
EZ and presents a large number of false positives. See Figures 6.13 and 6.14. The detectability
of the a-contrario approach is increased for the 40% case, but it still does not find most of the
EZ. The substraction method has no false negatives but increases the number of false positives.
See Figures 6.15 and 6.16. For the 60% activation case, the a-contrario approach detects most of
the EZ with a small number of false positives. The substraction approach detects all the active
regions but very imprecisely. See Figures 6.17 and 6.18. The old a-contrario method yields no
detections in any of the cases.

Phantom 3 This case corresponds to the activation of the left hippocampal formation (30%),
left uncus (30%) and the deactivation of the right hippocampal formation (30%). It represents a
more complex seizure, including the hipoperfusion of the right hippocampal formation. A similar
behavior as in the previous cases is found for this configuration. The a-contrario method detects
the EZ, but not completely. It presents a small number of false positives. The substraction
approach has no false negatives but a very imprecise detection. The old a-contrario approach has
no detections.
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Figure 6.5: Phantom 1 - Activation level: 30%, Method: classical substraction. White: Correct
detections. Yellow: False negatives. Red: False positives. The method presents almost no
false negatives but a large number of false positives (more false positives appear in the slices
not displayed).

Remarks The new method appears to perform as expected under controlled conditions. In
certain cases, mostly of low activation levels, it presents false negatives. This is highly undesirable
for the EZ localization application. However, it is important to highlight that in the real cases
experiments that will be presented in the following section, the EZ is always among the detected
candidates. Notice that despite the phantoms were set in order to approximate real seizures,
activation differences between ictal and inter-ictal scans of 80% to 100% were found in various of
the real cases. False positives are not a problem since they are a controlled number and in general
do not affect the precision of EZ localization. The detectability threshold of the a-contrario
approach seems to have been reduced. The EZ is correctly located for activation levels lower than
that of the old a-contrario approach. Thus the new approach appears to be more sensitive than
the previous one. In [46] the authors found a minimum activation threshold of 40% for the old
a-contrario method. We found a different result for the tested configuration. However, beyond
absolute values, the interesting point to highlight is the decrease of the detectability threshold
for the new method. Moreover, it is important to remark that the good results obtained by the
substraction method are highly influenced by the perfect alignment of the scans. As previously
mentioned, the substraction method is prone to alignment artifacts.

6.5.2. Real cases

The previously described a-contrario detection method was tested on a dataset of 7 patients
with medically refractory epillepsy (1-34, 3 male). Data was provided by the Center of Nuclear
Medicine of Hospital de Cĺınicas, Facultad de Medicina, Universidad de la República. The location
of the EZ was defined by consensus in the Epilepsy Surgery Program after pre-surgical evaluation.
For each patient, two scans are available: an inter-ictal and an ictal spect scans. The pre-
processing of the scans includes:

71



Figure 6.6: Phantom 1 - Activation level: 50%, Method: a-contrario. White: Correct detections.
Yellow: False negatives. Red: False positives. For the 50% activation case, the a-contrario
approach increases the number of correct detections without a major increase on false positives.

1. Realignment: both scans are realigned with each other using the realignment utility of the
SPM software [47].

2. Masking: a mask of the brain is generated, based on the empirical histogram of the gray
level values.

3. Normalization: Each scan is normalized to have constant total number of counts. In this
manner, each voxel represents a relative number of counts with respect to the total counts.
This allows to compare the scans even if the total number of counts differs from differences in
the radiotracer concentration at the moment of injection, the time elapsed between injection
and acquisition, etc.

The subtraction image is then computed and the a-contrario detection method is applied. The
a-contrario thresholds are adjusted using the method described in Section 6.4. The measure-
ment kernels are elliptical 3D kernels and three scales are tested: [(2, 1, 1), (3, 2, 1), (4, 3, 1)], with
(ra, rb, rc) the kernel radius in each component, and [(3, 2, 1), (4, 3, 1), (5, 4, 1)] the corresponding
local measurement patch sizes.

The results are compared against those obtained using the old a-contrario approach and those
obtained by the specialist using the substraction method. Results evaluation was conducted jointly
with an specialist of the Center of Nuclear Medicine of Hospital de Cĺınicas. In all cases, the EZ
area was among the detected EZ candidates. In 6 of the 7 cases, the results obtained by the new
a-contrario detection approach are very similar to those obtained by the old a-contrario approach.
Most detections match in position, varying in some cases on intensity and size. In [1], these 6 real
cases were analyzed and the results of the old a-contrario approach were compared against those
of the substraction method. The a-contrario method, in both the old and new approach, shows
better defined activations in the EZ and fewer false detections than the substraction method. It is
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Figure 6.7: Phantom 1 - Activation level: 50%, Method: classical substraction. White: Correct
detections. Yellow: False negatives. Red: False positives. Similar behavior as in the 30%
activation case, with an increased number of false positives.

also more robust to alignment errors between the scans and less sensitive to masking errors than
the latter. Among the differences between the results of the two a-contrario methods we highlight:

Reduction of false positives. Despite the previous a-contrario approach already had very few
false detections, this number diminishes in some of the studied cases (see Figures 6.21 and
6.22).

Emergence of new detections that belong to the seizure activation circuit. This aspect
is remarkable since the highly restrictive thresholding of the old a-contrario method gives
clean images (low number of false detections) which are not in accordance with reality. The
perfusion circuits are complex and several brain regions should show side effects of the seizure
(see Figures 6.23 and 6.24). In the studied cases, the new a-contrario approach increments
the detection of zones in the propagation circuit without increasing the false positives.

The intensity level of the EZ. Some differences were found on the intensity level of the
detections. In most cases the EZ appears with higher intensity in the new a-contrario
approach (see Figures 6.25 and 6.26). In one case, we find the opposite behavior (see Figures
6.27 and 6.28).

The biggest difference appears in one of the cases where the old a-contrario approach finds no
detection while the new approach does. Despite showing false detections, the new method attains
the EZ detection.

Remarks If we compare the performance of both a-contrario methods, the major difference is
given by the restriction level of the threshold. As we previously stated, the old a-contrario approach
sets a too restrictive threshold, which allows clean images -desirable up to certain point- but which
is prone to false negatives and even no detections in cases of known EZ presence. Having a low
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Figure 6.8: Phantom 1 - Activation level: 70%, Method: a-contrario. White: Correct detections.
Yellow: False negatives. Red: False positives. The a-contrario method continues to increase
the number of correct detections without increasing false positives.

number of false negatives is critical in this application. It is preferable to give a larger number of
candidates, that can be evaluated by the specialist, than discarding most detections with the aim
of automatically finding the EZ. The inherent complications of the problem, described in Section
6.1, strongly justify the selection of a less restrictive threshold. The same behavior had been
verified in the experiments using phantoms. In the new approach, the threshold on the activation
level is reduced. Moreover, the new approach has shown to have the quality of increasing the valid
detections without considerably increasing the false positives.
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Figure 6.9: Phantom 1 - Activation level: 70%, Method: classical substraction. White: Correct
detections. Yellow: False negatives. Red: False positives. No false negatives. The number
of false positives is reduced.

Figure 6.10: Phantom 1 - Activation level: 100%, Method: a-contrario. White: Correct de-
tections. Yellow: False negatives. Red: False positives. The a-contrario method presents
almost no false negatives nor false positives.
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Figure 6.11: Phantom 1 - Activation level: 100%, Method: old a-contrario. White: Correct
detections. Yellow: False negatives. Red: False positives. The detection results are similar
to those of the new a-contrario approach but more precise (less amount of false positives).

Figure 6.12: Phantom 1 - Activation level: 100%, Method: classical substraction. White:

Correct detections. Yellow: False negatives. Red: False positives. No false negatives. The
detection is less precise than that of the a-contrario methods.
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Figure 6.13: Phantom 2 - Activation level: 20%, Method: a-contrario. White: False negatives.
Orange: False positives. The activation zone is not detected.

Figure 6.14: Phantom 2 - Activation level: 20%, Method: classical substraction. White: Cor-
rect detections. Yellow: False negatives. Red: False positives. The substraction method
detects a small region of the EZ and presents a large number of false positives.
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Figure 6.15: Phantom 2 - Activation level: 40%, Method: a-contrario. White: Correct detec-
tions. Yellow: False negatives. Red: False positives. The detectability of the a-contrario
approach is increased for the 40% case, but it still does not find most of the EZ.

Figure 6.16: Phantom 2 - Activation level: 40%, Method: classical substraction. White: Cor-
rect detections. Yellow: False negatives. Red: False positives. The substraction method
has no false negatives but increases the number of false positives.
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Figure 6.17: Phantom 2 - Activation level: 60%, Method: a-contrario. White: Correct detec-
tions. Yellow: False negatives. Red: False positives. The a-contrario approach detects
most of the EZ with a small number of false positives.

Figure 6.18: Phantom 2 - Activation level: 60%, Method: classical substraction. White: Cor-
rect detections. Yellow: False negatives. Red: False positives. The substraction approach
detects all the active regions but very imprecisely.
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Figure 6.19: Phantom 3 - Method: a-contrario. White: Correct detections. Yellow: False nega-
tives. Red: False positives. The a-contrario method detects the EZ, but not completely. It
presents a small number of false positives.

Figure 6.20: Phantom 3 - Method: classical substraction. White: Correct detections. Yellow:

False negatives. Red: False positives. The substraction approach has no false negatives but
a very imprecise detection.
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Figure 6.21: Method: old a-contrario. The white circles show four false positives that are no longer
present on the new a-contrario detection result. See Figure 6.22.
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Figure 6.22: Method: new a-contrario. The false positives marked with white circles in Figure 6.21
are no longer present in the new a-contrario detection. Notice that the rest of the detections
are quite similar and in particular the EZ is correctly localized by both methods (slices +54
and +60).
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Figure 6.23: Method: old a-contrario. The old a-contrario detection in this case is particularly clean.
The EZ is almost the only detection. A low number of false positives is desirable for a correct
interpretation of the results. However, this image is not in accordance with reality since
during a seizure the activated zone is not only the EZ.
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Figure 6.24: Method: new a-contrario. New detections appear with the new a-contrario detection
method. Compare results with Figure 6.23. According to the specialist interpretation, most
of the new detections are not false positives but parts of the seizure activation circuits.
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Figure 6.25: Method: old a-contrario. White circles show the EZ in different slices. The intensity level
of the EZ is not among the highest on the image. Compare the results with those obtained
by the new a-contrario method in Figure 6.25.
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Figure 6.26: Method: new a-contrario. The EZ is clearly identified and its intensity is among the
highest in the image (slice +23). Compare the results with those obtained by the old a-
contrario method in Figure 6.25.
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Figure 6.27: Method: old a-contrario. The White circle shows the EZ. It is clearly identified and its
intensity level is among the highest on the image. Compare the results with those obtained
by the new a-contrario method in Figure 6.28.
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Figure 6.28: Method: new a-contrario. The EZ is identified but with lower intensity than in the old
a-contrario result (slice +39). Compare the results with those obtained by the old a-contrario
method in Figure 6.27.
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Chapter 7

SPECT denoising

One of the aims of this work is to propose a denoising technique to improve spect images
quality. For that purpose, we have studied the spect image formation process and we have char-
acterized spect images, both sinograms and tomographic images, so that to propose a denoising
technique well-suited to this kind of images. The denoising process can be performed either before
reconstruction, i.e. on the sinograms, or after reconstruction, i.e. on the tomographic images.
A post-reconstruction denoising method does not seem so direct, since as we showed in Section
5.2.1, the reconstructed image pixels are correlated (denoising techniques are usually based on
the hypothesis of independent or uncorrelated noise) and follow a multivariate log-normal law.
On the contrary, given that sinogram pixels can be modeled as independent, Poisson distributed
random variables, we propose to apply a pre-reconstruction denoising technique specially designed
to remove uncorrelated Poisson noise. This Poisson denoising technique was recently proposed by
Deledalle et al. [48] and is an extension of the nl means image denoising approach [49].

We start this section presenting in 7.1 a brief summary of the denoising techniques applied to
photon low-count images. Section 7.2 is devoted to describe the denoising approach of Deledalle et
al. In Section 7.3 we present an experimental evaluation of the denoising technique, with simulated
and real examples.

7.1. Denoising photon low-counts images

As we previously mentioned, the et denoising process can be performed either before recon-
struction, i.e. on the sinograms, or after reconstruction, i.e. on the tomographic images. However,
most of the recent work in et image denoising is performed before reconstruction. This may be
caused by the same reason that motivated us to perform denoising before reconstruction, i.e. the
known independent, Poisson distributed model for sinogram images. In the following we present
a brief summary of pre-reconstruction denoising methods. We will classify them into two groups:
whether taking into account the Poisson nature of the sinogram images or not.

Well-known filters like Hanning, Butterworth, Metz and Wiener have been widely used in et

applications to reduce noise components before reconstruction [12]. They are examples of those
not considering the Poisson nature of the images. These filters have the drawback of degrading
image contrast and introducing blur. In order to overcome this issues, adaptive non-stationary
noise reduction filters have been proposed [50, 51, 52].

Multi-scale wavelet based techniques have been widely developed for et denoising applications.
Most of these algorithms are based on the idea of thresholding the wavelet image coefficients and
then synthesizing the denoised image from the resulting coefficients. The two approaches can be
encountered, both accounting for the Poisson nature or not. Among the latter we may mention
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the work of Jin et al. [53] who propose a wavelet based multi-scale denoising technique using
a cross-scale correlation scheme to define thresholds. Examples of those taking into account the
Poisson nature of the images are the work of Timmermann and Nowak [54], who derived a Bayesian
intensity estimate procedure, the Multiscale Multiplicative Innovations (MMI) model for Poisson
denoising; the work of Willet and Nowak [55], who introduced a multiscale method for nonpara-
metric piecewise polynomial intensity and density estimation of Poisson point processes; and the
work of Nowak et al [56] who propose a wavelet-domain filtering procedure designed using cross-
validation. In [57] we can find a comparative study of denoising wavelet based methods.

Variations of the total variation (TV) regularization scheme proposed by Rudin et al. [58] have
also been applied to medical imaging denoising. Among them, the work of Dey et al. [59], proposes
to combine the Richardson-Lucy algorithm with a regularizing constraint based on total variation,
whose smoothing avoids oscillations while preserving edges; and the work of Bardsley et al. [60]
proposes a total variation-penalized Poisson likelihood estimation approach. These two methods
take into account the Poisson nature of images. On the contrary, Zhang et al. [61] propose a
method based on a total variation minimization approach independent of the Poisson nature of
the noise.
In [62, 63] we can find examples of platelet based methods, suited to Poisson distributed data,
applied to nuclear imaging denoising. The performance of these denoising methods is not always
fully investigated. One of the main reasons is the lack of ground-truth information for real et

studies. For this reason, in many cases the performance evaluation is only qualitative. Perfor-
mance comparisons between different denoising algorithms are not easily done since an established
protocol does not exist. Despite this, some examples of comparative analysis can be found in the
literature[12, 57].

7.2. Poisson Non-local Means

In [48] Deledalle et al. propose an extension of nl means image denoising [49] for the case
of images corrupted by Poisson noise. nl means performs image denoising by averaging pixels of
similar value. Let us consider the true image u, the noisy data v and û the estimation of u from
v. Images are considered to be defined over a discrete regular grid Ω and vs denotes a pixel value
at site s ∈ Ω. nl means defines the estimate û of u as

ûs =

∑

t ws,tvt
∑

t ws,t
, (7.1)

where t denotes image pixels and ws,t is a weight depending on the similarity between s and t pixel
values. For robustness reasons, t is limited to a search window centered at s and the similarity
between pixels s and t is based on patches ∆s and ∆t centered at them. Patches similarity is
usually defined by the Euclidean distance, giving rise to the following expression for weight values

ws,t = exp

(

−
∑

b(vs+b − vt+b)
2

γ

)

,

where s+b and t+b denotes pixel b on ∆s and ∆t respectively and γ is a filtering parameter.
Deledalle et al. propose a probabilistic approach for weights calculation. They propose to find
ws,t as

ws,t = P (u∆s
= u∆t

|v)1/α. (7.2)

The probability P (u∆s
= u∆t

|v) evaluates the hypothesis

H0 : u∆s
= u∆t

,

i.e. patches ∆s and ∆t being equal in the noise-free image. Under the assumption of non-spatially
correlated noise, the probability can be calculated as
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P (u∆s
= u∆t

|v) =
∏

b

P (us+b = us+b|vs+b, vt+b). (7.3)

The value P (λ∆s
= λ∆t

|k) is called statistical similarity. In a Bayesian framework we have

P (u1 = u2|v1, v2) =
p(v1, v2|u1 = u2)

p(v1, v2)
︸ ︷︷ ︸

Similarity L(v1, v2)

P (u1 = u2)
︸ ︷︷ ︸

Empirical Similarity

, (7.4)

where to simplify the notation we have substituted s+b and t+b for 1 and 2 respectively.

The first term in 7.4, L(v1, v2), evaluates the hypothesis that the noisy pixels vs and vt come
from a distribution with the same parameter u versus the hypothesis that their parameters u1 and
u2 are independent. In the case of u, u1 and u2 being known, the likelihood ratio test L(v1, v2) is
the most powerful test (cf. Neyman-Pearson). Since in our case these parameters are unknown,
a new formulation of L(v1, v2) is needed including all their possible values. In [48] the authors
propose to use an alternative test based on considering the parameter values that maximize the
likelihood ratio. The generalized similarity function is then

LG(v1, v2) =
sup

u
p(v1;u1 = u)p(v2;u2 = u)

(
sup

u1
p(v1;u1 = u1)

) (
sup

u2
p(v2;u2 = u2)

) (7.5)

=
p(v1, v2;u1 = û, u2 = û)

p(v1, v2;u1 = û1, u2 = û2)
.

Instead of evaluating the likelihood of v1 and v2 for all possible values u of the unknown u, the
most favorable case is considered, i.e. the parameter values that maximize LG(v1, v2).

For low signal-to-noise ratio images it has been shown[48] that denoising performance can be

improved by an iterative procedure incorporating a pre-estimate θ̂ of the noise-free image in the
similarity calculation. The term named Empirical Similarity in Equation (7.4) meets this goal.
It can be considered as a statistical test of the hypothesis u1 = u2 and the Kullback-Leibler
divergence between the pre-estimations θ̂1 and θ̂2 is used for that purpose,

P (u1 = u2) = exp

(

−1

ν
SDKL(θ̂1, θ̂2)

)

, (7.6)

with

SDKL(θ̂1, θ̂2) =

∫

[p(v|θ̂1) − p(v|θ̂2)] log
p(v|θ̂1)

p(v|θ̂2)
dv,

The parameter ν represents the quality associated to the estimates θ̂1 and θ̂2.
Hence from (7.2), (7.3), (7.5) and (7.6) we have,

ws,t = P (u∆s
= u∆t

|v)1/α (7.7)

= exp









− 1

α

∑

b

− ln LG(vs+b, vt+b)

︸ ︷︷ ︸

Fs,t

− 1

β

∑

b

DKL(ûs+b, ût+b)

︸ ︷︷ ︸

Gs,t









(7.8)

= exp

(

− 1

α
Fs,t −

1

β
Gs,t

)

, (7.9)
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with α a regularization parameter and β = αν. The parameters α and β control the trade-off
between the information obtained from the noisy data and that from the pre-estimate of the noise-
free image. In the case of a good quality image it is better to choose a smaller α value and a larger
β in order to prioritize the information from the noisy data. On the contrary, for low signal to
noise ratio images it is better to increase α and decrease β so that to favor the pre-filtered data.
In the case of Poisson degraded images, the noisy-data similarity criteria Fs,t becomes [48]

Fs,t =
∑

b

− ln LG(vs+b, vt+b) (7.10)

=
∑

b

vs+b ln vs+b + vt+b ln vt+b − (vs+b + vt+b) ln
vs+b + vt+b

2
, (7.11)

and Gs,t

Gs,t =
∑

b

− lnDKL(ûs+b, ût+b) (7.12)

=
∑

b

(ûs+b − ût+b) log
ûs+b

ût+b
. (7.13)

In order to define α and β values, Deledalle et al. propose to use an automatic method based
on the mean square error (mse) minimization. This method uses an estimator of the mse for
nl means with Poisson noise and the Newton’s method to find the optimal parameters in few
iterations.

The mse is given by

E

[
1

N
|u − û|2

]

=
1

N

∑

s

(u2
s + E[û2

s] − 2E[usûs]),

with N the image size.
The mse depends on the noise-free image u. However, it can be substituted by an estimation
based on the Stein’s unbiased risk estimator (sure) that depends only on the noisy image û. The
sure estimator for the case of Poisson noise is

R(û) =
1

N

∑

s

(u2
s + û2

s − 2vsūs),

where ūs refers to the denoised value obtained by the nl means iterative approach applied to v̄ ,
i.e.

ūs =
w̄s,tv̄t
∑

t w̄s,t
, (7.14)

with

w̄s,t = exp

(

− F̄s,t

α
− Gs,t

β

)

,

F̄s,t =
∑

b

− lnLG(v̄s+b, v̄t+b),

v̄t =

{
vt if t 6= s

vt − 1 otherwise

Note that (7.14) is valid only if Gs,t does not depend on the noise component v, i.e. θ̂ does

not depend on v. This approximation holds if the noise variance is significantly reduced in θ̂
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estimation. At last, Newton’s method is used to minimize R(û) and find the optimal α and β
values. These parameters will be set according to the trade-off between the information brought
by the noisy and the pre-estimate images. In the case of a high quality pre-estimate image, β will
be low in order to prioritize the pre-estimate information in the weights calculation. The opposite
occurs for a low quality pre-estimate image.

7.3. Experiments

In Section 5.1.1 we showed that the independent Poisson noise model is a suitable model for
SPECT sinogram images. Thus we used the Poisson nl means algorithm to denoise sinogram
images before reconstruction in order to improve the reconstructed images quality. Experiments
were performed with both simulated and real scans.

7.3.1. Simulations

Emitting Sphere

We begin with a simple phantom, a spherical phantom of radius 5 cm with an inner off-centered
sphere of radius 1 cm. Two activity level values were tested for the inner sphere, i.e. two and
four times the activity of the outer sphere, namely Phantom 1 and Phantom 2. This was found to
be equivalent to relative increase of counts respect to the outer sphere of approximately 30% and
80% respectively. This contrast levels are of the order of those found in real scans. Simulation
parameters were set in order to obtain a total number of counts in the order of 4 million, based
on what would be expected for a volume of that size in a real scan [21]. We remark these aspects
since higher counts and contrast levels inevitably lead to better denoising and reconstruction re-
sults but are not necessarily in accordance to realistic cases. Attenuation effects are simulated and
scatter noise is considered. Non-ideal collimation is simulated by means of an acceptance angle
of 5.0 degrees. Non-ideal detector effects are not included. The ground-truth used for denoising
performance evaluation is obtained with the same phantom using important sampling techniques
during the simulations. Almost noise-free projections are obtained and reconstructed using osem,
set with the same parameters used to reconstruct the noisy and denoised images. The noise-free
reconstructed phantom (one for each inner activity level) is taken to be the ground-truth for de-
noising performance evaluation.

Denoising performance will be evaluated through the quality of the reconstructed image. The
performance indicator is the mse between the reconstructed image and the ground-truth image.
Table 7.1 shows the results obtained for both phantoms. Figures 7.1, 7.2 and 7.3 show slices
70 to 81 of the ground-truth, denoised and noisy case respectively for Phantom 1. Figures 7.5,
7.6 and 7.7 show slices 70 to 81 of the ground-truth, denoised and noisy case respectevely for
Phantom 2. The inner sphere is supposed to appear in slices 72 to 85. The reconstruction from
the noisy sinogram is clearly much more noisy than that of the denoised sinogram. Also very high
voxel values are obtained in the outer sphere edges for the reconstructed noisy case, which makes
visualization difficult since it enlarges the dynamic range of the image. In Figure 7.4 we can see
a saturated version of Figure 7.3. All voxel values greater than 450 have been set to that value.
We find a considerably reduced value of the mse for the denoised projections reconstruction case,
52.2 against 896.3 for Phantom 1 and 55.0 against 812.9 for the Phantom 2. The case of Phantom
1 (inner activity 2) is supposed to be more difficult since the contrast between the inner and the
outer spheres is lower.

NCAT brain phantom

We performed the same denoising experiment using the NCAT brain phantom (see Figure 4.1).
The phantom activity distribution (activity level in each phantom voxel) was set according to the
real scan mean activity levels deduced in Section 5.1.6. Specific brain regions were set to activity
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Phantom 1 Phantom 2

Metric Denoised Noisy Denoised Noisy

mse 52.2 896.3 55.0 812.9

Table 7.1: Sphere: Denoising experimental tests results.
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Figure 7.1: Slices of the ground-truth phantom. Phantom 1

level values below or above the mean according to the indication of a medical expert. This way
a more realistic brain activity distribution is achieved. A parallel hexagonal-holes collimator was
simulated. Collimator dimensions (thickness, hole radius, septal thickness) were set according to a
real collimator [33]. The detector is a two-layered detector with an energy resolution (FWHM) of
10% and a reference energy of 140 keV. Attenuation effects are simulated. Scatter noise is included.

We first generated the ground-truth sinograms using importance sampling techniques. As in
the previous case, we obtained an almost noise-free image that was reconstructed and used as
ground-truth for the denoising performance evaluation. For this experiment, the noisy sinograms
were obtained from the almost noise-free sinograms adding Poisson noise. As was explained in
Section 4.2.1, the weights image obtained using importance sampling techniques is the image of
expected values and can be used to generate various noisy versions of the simulated acquisition
process by adding Poisson noise. Next, we applied the Poisson nl means denoising algorithm to
the noisy sinograms to obtain the denoised version of the sinograms. The osem package was used
to reconstruct the ground-truth, noisy and denoised sinograms.

As in the previous case we used the mse between the reconstructed images (noisy and de-
noised) and the reconstructed ground-truth as denoising performance indicator. The mse for the
noisy case and the denoised cases, with different parameter values of the denoising technique, are
displayed in Table 7.2. The mse(%) indicator shows the mse as a percentage of the sum of squared
values of the ground-truth image. The parameter patchSize represents the denoising patch size
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Figure 7.2: Slices of the reconstructed denoised sinogram. Phantom 1.
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Figure 7.3: Slices of the reconstructed noisy sinogram. Phantom 1.

(patchSize×patchSize). The pre-estimate θ̂ of the noise-free image used in the similarity calcu-
lation is initialized as the convolution of the input image with a disk of radius preEstSz. Figures
7.8, 7.9 and 7.10-7.14 show slices of the reconstruction of the ground-truth, noisy and denoised
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Figure 7.4: Slices of the reconstructed noisy sinogram. Saturated image. Phantom 1.
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Figure 7.5: Slices of the ground-truth phantom. Phantom 2.

images respectively.

We find an improvement in reconstruction performance after sinograms denoising. The mse
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Figure 7.6: Slices of the reconstructed denoised sinogram. Phantom 2.

 

 

200

300

400

500

600

700

800

Figure 7.7: Slices of the reconstructed noisy sinogram. Phantom 2.

values for the pre-denoised images are lower than that of the noisy image. From an observer
perspective, this result can also be perceived comparing the slices displayed in Figures 7.10-7.14
to those in Figure 7.9. The slices for the pre-denoised sinograms appear less noisy. On the other
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patchSize preEstSz mse mse(%)

Noisy 7.8 × 107 2.5

Denoised

3 0 7.6 × 107 2.4
3 1 5.0 × 107 1.6
5 0 7.4 × 107 2.3
5 1 4.3 × 107 1.4
5 2 3.7 × 107 1.2

Table 7.2: NCAT: Denoising experimental tests results.

hand, we see different behaviors among the pre-denoised results. The larger the patchSize, the
less noisy the results. However, this also implies much smoother images with less defined edges.
The same happens for preEstSz, since the larger preEstSz, the smoother the initialization
of the pre-estimate of the noise-free image. For medical applications, having correctly defined
edges is crucial. Therefore, it is necessary to find a good compromise between residual noise and
smoothness.
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Figure 7.8: Slices of the ground-truth reconstructed NCAT phantom.
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Figure 7.9: Slices of the reconstructed noisy NCAT sinogram.
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Figure 7.10: Slices of the reconstructed denoised NCAT sinogram (patchSize = 3,preEstSz = 0).
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Figure 7.11: Slices of the reconstructed denoised NCAT sinogram (patchSize = 3,preEstSz = 1).
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Figure 7.12: Slices of the reconstructed denoised NCAT sinogram (patchSize = 5,preEstSz = 0).
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Figure 7.13: Slices of the reconstructed denoised NCAT sinogram (patchSize = 5,preEstSz = 1).
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Figure 7.14: Slices of the reconstructed denoised NCAT sinogram (patchSize = 5,preEstSz = 2).

7.3.2. Real scans

The Poisson denoising technique was applied to 10 scans of 5 patients with medically refractory
epilepsy (ictal and inter-ictal scans of each patient). Data was provided by the Center of Nuclear
Medicine of Hospital de Cĺınicas, Facultad de Medicina, Universidad de la República. For each
scan, three reconstructions were made:

- the osem reconstruction of the denoised sinograms

- the osem reconstruction of the denoised sinograms + post-processing (Butterworth low-pass
filtering)

- the osem reconstruction of the original sinograms + post-processing (Butterworth low-pass
filtering)

The latter is the configuration commonly used at the Center.

The low-pass filtering post-processing is necessary since the reconstruction algorithm intro-
duces additional noise. Without post-processing, the reconstructed images are too noisy to be
analyzed. The cutoff frequency of the post-processing Butterworth filters were chosen by a spe-
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cialist of the Center in order to obtain the best visual result in each case.

At the Center, regular acquisitions (matrix 128 × 128, pixel size of 2.67mm and total photon
counts of about 6 million) are processed after reconstruction using a Butterworth filter of order 10
and a frequency cutoff ranging from 0.18 to 0.20. For this study, eight of the scans were acquired
with the regular parameters and post-processed with a cutoff frequency of 0.18. This frequency
was increased to 0.23 to process the reconstruction of the corresponding denoised sinograms. The
remaining two scans had been acquired with a pixel size of 3.45 and post-processed with a But-
terworth filter of order 10 and cutoff frequency 0.25. For that case, a cutoff frequency of 0.32
was enough to obtain good results in the pre-denoised sinograms case. Thus, in all cases, the
pre-denoising of the sinograms allows the utilization of a higher post-processing cutoff frequency
which leads to less smoothed results.

The reconstruction of the denoised sinograms without post-processing was done for evaluation
purposes. However, the results are no longer compared against the ones with post-processing since
the noise introduced by the reconstruction algorithm is high and makes these images too noisy to
be analyzed.

The results of the reconstructions after post-processing, with and without sinogram denoising,
were analyzed and compared by an expert physician of the Center of Nuclear Medicine of Hospital
de Cĺınicas. Figures 7.15, 7.16 and 7.17 show slices of the obtained results for two basal and one
ictal scan. According to his opinion, the pre-denoised images show a significant improvement in
the contrast between brain and extra-cerebral tissues with respect to the original acquisition. The
cerebral cortex is shown more intense and its contours are defined with greater precision. Visual
analysis of the pre-denoised images shows a better edge definition, which leads to an improvement
in the anatomical detail of the brain structures and the appearance of higher resolution. In this
sense, sharper edges are observed between the sulci and the brain gyrus. Certain brain areas are
more prone to resolution problems, as very small or very close structures, that fail to distinguish
at the common spect resolution. The inspection of the images was focused particularly on this
kind of areas, such as the striatum, the insula or the mesial cortex and the cingulate gyrus. In
most cases, a clearer separation was achieved between the head of the caudate nucleus and the
putamen, the two structures that make up the striatum. A similar effect was observed in the
mesial cortex and cingulate gyrus, with a better separation between the two hemispheres, as well
as the separation between the insula, the inferolateral frontal cortex and the putamen. In some
cases, greater contrast was seen between the hyperactive and hypoactive areas, as well as better
visualization of deep brain structures with low uptake, as the mesial temporal cortex, of great
importance in various neurological and psychiatric diseases, including epilepsy and dementia. This
might improve the quantification of cerebral blood flow changes in these structures. In general
terms, the method was considered promising, with potential improvements in several aspects and
without loss of image quality.

7.3.3. Thresholding

Since the ultimate goal of denoising is improving the reconstructed images quality to ease anal-
ysis and lesion detection, we perform a simple thresholding test to evaluate lesion detectability in
both cases: pre-denoised and non pre-denoised reconstructed images. We use the word detectabil-
ity in italics since the concept of detectability has not been formally defined. The idea is simply
to evaluate whether it exists a threshold to separate lesion from background, in our case: inner
sphere from outer sphere.
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(a) Reconstruction of the denoised sinograms using osem with post-processing.

(b) Reconstruction of the original sinograms using osem with post-processing.

(c) Reconstruction of the denoised sinograms using osem without post-processing.

Figure 7.15: Comparing images (a) and (b) we can see that the denoising method seems to improve edges
definition and better distinguish small adjacent structures. The post-processing filtering in
(a) is less smoothing than that of (b). In image (c) we verify that the reconstruction results
obtained without post-processing are too noisy.
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(a) Reconstruction of the denoised sinograms using osem with post-processing.

(b) Reconstruction of the original sinograms using osem with post-processing.

(c) Reconstruction of the denoised sinograms using osem without post-processing.

Figure 7.16: See caption on Figure 7.15.
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(a) Reconstruction of the denoised sinograms using osem with post-processing.

(b) Reconstruction of the original sinograms using osem with post-processing.

(c) Reconstruction of the denoised sinograms using osem without post-processing.

Figure 7.17: See caption on Figure 7.15.
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Figure 7.18: Global thresholding results for the ground-truth image. Phantom 1.

Figure 7.19: Global thresholding results for the pre-denoised case. Phantom 1.
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Figure 7.20: Global thresholding results for the non pre-denoised case. Phantom 1.

Figure 7.21: Local thresholding results for the ground-truth image. Phantom 1.
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Figure 7.22: Local thresholding results for the pre-denoised case. Phantom 1.

Figure 7.23: Local thresholding results for the non pre-denoised case. Phantom 1.

Thresholding is performed in two ways: globally and locally. The global threshold is a multiple
of the mean volume value and is applied to all slices. The local threshold is a multiple of each
slice mean value and is calculated for each slice. In both cases, the mean value is calculated inside
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a mask discarding the background. Figures 7.18-7.20 and 7.21-7.23 show the results obtained for
Phantom 1, the global and local case respectively. Figures 7.24 to 7.26 and 7.27 to 7.29 show the
results obtained for Phantom 2, also for the global and local cases.

Figure 7.24: Global thresholding results for the ground-truth image. Phantom 2.
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Figure 7.25: Global thresholding results for the pre-denoised case. Phantom 2.
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Figure 7.26: Global thresholding results for the non pre-denoised case. Phantom 2.

Figure 7.27: Local thresholding results for the ground-truth image. Phantom 2.
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Figure 7.28: Local thresholding results for the pre-denoised case. Phantom 2.

Figure 7.29: Local thresholding results for the non pre-denoised case. Phantom 2.
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Chapter 8

Conclusions and future work

In the present work we conducted an exhaustive analysis of the spect image formation pro-
cess. A mathematical model of the spect images acquisition was presented, for the case of Anger
like gamma cameras. This model led to the statistical characterization of the spect sinograms
as independent Poisson distributed random variables. This characterization of spect sinograms
is widely known and accepted in the scientific community [5, 6, 7]. However, to the best of our
knowledge, a detailed analysis of the acquisition process and justification of the validity of the pre-
vious assumption is not presented. In this work we analyzed each step of the acquisition process,
starting from the 3D volumetric emission, considering photon evolution throughout the volume
and the acquisition process itself, in order to understand in depth the process, study the applica-
bility of the model and justify each assumption that is made. A statistical characterization was
also presented for the post-reconstruction images. The approach of Barrett et al. [8] proposes a
statistical model of the ml-em reconstructed images. They show that, up to an approximation,
the reconstructed image follows a multivariate log-normal law. The extension of this analysis for
osem reconstructed images [42] was also presented.

The spect image model that was obtained encouraged the reconsideration of the a-contrario
EZ localization method we had previously introduced in [1]. The new a-contrario EZ detection
method introduces the following changes: the incorporation of the new background model, based
on that of Barrett et al. [8]; a new measurement, combining a global and a local approach; the
testing of different scales (multi-scale approach); the computation of different nfa thresholds for
each scale, inspired in the method of Burrus et al. [9]. The performance of the new a-contrario
method was evaluated using both phantoms and real scans.

Regarding the new a-contrario detection method, we found that it maintains positive features
of the previous approach such as: robustness to alignment and masking problems, correct foci
definition and low number of false positives. Some improvements were found in the experimental
evaluation. One of the most remarkable is the greater sensitivity of the new method (a lower de-
tectable activity threshold). The new threshold is less restrictive than the previous one, allowing
the reduction of false negatives, which is critical in the EZ localization application. Moreover, the
reduction on the false negatives is achieved without a significant increase in false positives. In
some cases, we even found a reduction on the number of false positives. The new threshold also
allows the emergence of new detections that belong to the seizure activation circuit. This aspect
is remarkable since the highly restrictive thresholding of the old a-contrario method gives clean
images (low number of false detections) which are not in accordance with reality. The perfusion
circuits are complex and several brain regions are active during the seizure. Finally, greater in-
tensity level of the EZ was found in some cases (not all cases).

The spect image model also inspired the application of a denoising technique to perform sino-
grams denoising. The method, introduced by Deledalle et al. [48], is an extension of nl means
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denoising for the case of images corrupted by Poisson noise. The denoising performance was eval-
uated using phantoms and real scans. In both cases good results are obtained. In particular, for
real scans, the denoising method seems to improve edges definition and better distinguish small
adjacent structures. Moreover, it seems to increase the intensity in areas of low uptake, as the
temporal lobes, which is a positive aspect. On the other hand, the reconstructed images, even after
the post-processing, are a little noisy. For this reason, results obtained with a low-pass filtering
post-processing are preferred to those without it. Finally, results are promising and it would be
interesting to test some variations of the denoising approach and analyze a larger number of real
cases.

Some interesting ideas came up from the work and we would like to include them as future
work. First it would be interesting to create a more complex statistical model of spect images,
that takes into account its spatial variability caused by the brain physiology. For that purpose,
it may be useful to create a brain map assigning different variability to each region depending on
its functional characteristics. This model could be applied to both EZ detection and sinograms
denoising. In particular, for EZ detection, it would be interesting to develop a probability map
that reflects the probability of an EZ to be on each brain region. This map could be included
as a prior to the detection task, incorporating part of the a priori knowledge acquired in medical
practice. For example, a simple map would be a segmentation of white and grey matter, since EZ
only appear on the latter.

It is important to do a more exhaustive evaluation of the new a-contrario detection method
using phantoms, including alignment problems and other non-idealities. The evaluation on more
real patients is also crucial.

The reconstructed images obtained from denoised sinograms no longer follow the statistical
model introduced by Barrett et al. since the denoising filter is nonlinear. It would be interesting
to propose a new image model for that case in order to apply the a-contrario detection approach.
For example, the new model could be based on a linearization of the denoising filter. On the other
hand, it would be interesting to derive a new detection technique that makes use of the denoised
image characteristics.
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Appendix A

V(r) expected value

In order to find E[V(r)], let us begin by calculating the conditional expected value [5]

E[V(r)|K = k],

E[V(r)|K = k] =

∫

. . .

∫ k∑

j=1

δ(r − rj)p(r1) . . . p(rk)dr1 . . . drk (A.1)

=

∫

. . .

∫

[δ(r − r1) + · · · + δ(r − rk)]p(r1) . . . p(rk)dr1 . . . drk

=
k∑

j=1

∫

. . .

∫

δ(r − rj)p(r1) . . . p(rk)dr1 . . . drk

︸ ︷︷ ︸

tj

We proceed to calculate one of the terms tj of the previous sum. We take for example j = 1
and calculate t1 as

t1 =

∫

. . .

∫

δ(r − r1)p(r1) . . . p(rk)dr1 . . . drk (A.2)

(1)
=

∫

. . .

∫

p(r)p(r2) . . . p(rk)dr2 . . . drk

= p(r)

∫

. . .

∫

p(r2) . . . p(rk)dr2 . . . drk

(2)
= p(r)

(1)
∫

δ(r − r1)p(r1)dr1 = p(r)
(2)

∫
p(ri)dri = 1

Note that the result of (A.2) does not depend on the chosen j value, i.e. the result is valid for
all the terms tj .

Thus from (A.1) and (A.2) we have,

E[V(r)|K = k] =

k∑

j=1

p(r) = kp(r)

At last we find E[V(r)] as
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E[V(r)] =
∞∑

k=0

E[V(r)|K = k]PK[K = k] (A.3)

=
∞∑

k=0

kp(r)PK[K = k]

= p(r)
∞∑

k=0

kPK[K = k]

(3)
= λp(r)

(3)
∑∞

k=0 kPK[K = k] = E[K] = λ
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Appendix B

Pearson Chi-square test

Pearson’s chi-square goodness of fit test is a non-parametric test of goodness of adjustment
to a given distribution. Given n observations (X1, . . . ,Xn) of an unknown distribution, we define
the m classes (c1, . . . , cm) as a partition of the set of possible values. The empirical distribution
is then defined as

P̂ (ck) =
1

n

n∑

i=1

1ck
(Xi),

where 1ck
(Xi) is the indicator function taking value 1 when Xi belongs to class ck.

The hypothesis to test H0 is,

H0 : P [Xi ∈ ck] = P0(ck),∀k = 1, . . . ,m

with P0 the theoretical distribution to be tested for adjustment to samples (X1, . . . ,Xn).
Under H0, the empirical distribution should be close to P0. The level of adjustment between both
distributions is measured by the chi-square test statistic Dχ2(P0, P̂ ),

Dχ2(P0, P̂ ) =
m∑

i=1

(P0(ci) − P̂ (ci))
2

P0(ci)
.

Under H0, the probability distribution of the random variable nDχ2(P0, P̂ ) converges, for
n → ∞, to the chi-square probability distribution of parameter m − 1. Otherwise, if H0 is false,
nDχ2(P0, P̂ ) diverges to infinity. Thus the null hypothesis is rejected for very large values of the
statistic. Since the previous result is asymptotic, the sample size must be large enough to guarantee
the test confidence. Samples sizes at least in the order of hundreds are usually recommended.
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Appendix C

Rank Correlation Coefficients

C.1. Spearman’s rank correlation

Spearman’s rank correlation coefficient is a non-parametric measure of statistical dependence
between random variables. It evaluates monotonic relationships between variables, i.e. either the
variables increase in value together, or one decreases when the other increases.
Let X and Y be two random variables with sample values (X1, . . . ,Xn) and (Y1, . . . , Yn) respec-
tively. Let (x1, . . . , xn) and (y1, . . . , yn) be the ranks associated to X and Y sample values. In the
case of no tied ranks, Spearman’s coefficient of rank correlation ρ is then given by

ρ = 1 − 6
∑

i d2
i

n(n2 − 1)
,

where di = xi−yi and n is the sample size. If tied ranks exists, Pearson’s correlation coefficient
formula should be used instead,

ρ =

∑

i(xi − x̄)(yi − ȳ)
√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
.

C.2. Kendall’s rank correlation

Let (X1, Y1), . . . , (Xn, Yn) be a set of joint observations of two random variables X and Y.
Two pairs (Xi, Yi),(Xj , Yj) are called concordant if the product (Xi −Xj)(Yi −Yj) is positive, i.e.
if the sign of the difference between the X and Y components is the same, and discordant if the
product is negative. If C is the number of concordant pairs and D is the number of discordant
pairs, the Kendall’s rank correlation coefficient τ is defined as,

τ =
2(C − D)

n(n − 1)

Thus τ is the proportion of concordant minus discordant pairs (n(n − 1)/2 is the number of
possible pair comparisons). For a pair of objects taken at random, τ can be interpreted as the
difference between the probability for this objects to be in the same order and the probability of
these objects being in a different order. τ takes values between -1 and 1, with 1 obtained when
both orders are identical and -1 when the order is the exact reverse.
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Appendix D

Post-reconstruction Noise - C and

D matrices

For the ml-em case, under Approximation 1 and Approximation 2, matrix C(k) is expressed
in terms of its elements as

[C(k)]ij =
A

(k)
j

si

M∑

m=1

(

HmiHmj
∑N

n=1 HmnA
(k)
n

)

,

and matrix D(k) as

[D(k)]ij =
Hij

si

∑N
n=1 HjnA

(k)
n

.

For the osemcase, under Approximation 1 and Approximation 2, matrix C
(k)
m is expressed in

terms of its elements as

[C(k)
m ]ij =

A
(k)
j

si

M∑

m=1

(

[Hm]miHmj
∑N

n=1 HmnA
(k)
n

)

,

and matrix D
(k)
m as

[D(k)
m ]ij =

[Hm]ij

si

∑N
n=1 HjnA

(k)
n

.
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