
Incorporating some PSP practices into introductory programming
courses: A case study in Universidad del Quindío.

Sergio Cardona, Universidad del Quindío, Colombia
Rafael Rincón, Universidad Eafit, Colombia
Diego Vallespir, Universidad de la República, Uruguay

1.1 INTRODUCTION

The sustainability of the software industry depends largely on the formation of professionals with
high skills and abilities to develop quality software.The incorporation of the appropriate practices
for software development improves the capacity and productivity in the Information Technology
organizations.Unfortunately, this could mean high investments of time and training for
organizations.

We understand that the academy has the compromise and commitment of forming professionals
with the self-management and administration skills of their software process that can be defined,
measured, and controlled. The academic curricula must consider the skill development and
technical capacity for the construction of quality software. In this regard, some universities have
used quality oriented process models, and students apply the best software development processes
for: management, cost, time,removal, estimation ofsize , management of standards, and
prevention of flaws (Cardona & Bermúdez, 2012).

The Personal Software Process (PSP) is a software development process for an
individual(Humphrey, 1995).This process supports the Software Engineer for the construction of
quality products. The PSP is also a formation complement that aims for quality culture in software
development, and in the curricula from some universities, it is offered as an elective course. In
classroom experience reports(Bermón, Fernandez, Sanchez, Javier, & Seco, 2009), when the PSP
is used in the first programming course, the complexity of its implementation is identified because
the students not only learn to program, but also learn the good practices of software development
that the PSP proposes.

This article presents the results of a research which applied a learning strategy on an experimental
group implementing some PSP practices on a first programming course in the second half of
2012. The introduction of some PSP practices pretended that the students will apply individual
techniques for the development of skills in aspects like, planning, time estimation, and
management of software flaws.The results showed that the students meaningfully adopted
practices associated with time and flaw management.

Initially, the related works along with the conceptual support for the development of this research
are presented. Then, the methodology defined for its development is also presented. Following
that the learning strategy design; and finally, the results and conclusions.

SOFTWARE ENGINEERING INSTITUTE |1

1.2 RELATED WORKS

Since Watts Humphrey presented the PSP in his book “A Discipline for Software Engineering”,
diverse investigations about the impact that the use of The PSP generates in undergraduate and
graduate courses in universities have been carried over(Abrahamsson & Kautz, 2002), (Prechelt &
Unger, 2001), (Towhidnejad & Hilburn, 1997), (Hayes W, 1998), (Wesslén, 2000), (Börstler,
Carrington,& Hislop,2002), (Runeson, 2003). The PSP has been also used for experimenting in
Software Engineering courses(Honig, 2008), (Venkatasubramanian, Roy, & Dasari, 2001).
Likewise, there isthe report of learned lessons from the PSP implementation on the academic
sector with the software industry support (El Eman, Shostak, & Madhavji, 1996),(Rincón,
2010).Also, there are academic experiences related with TSP(Bayona, Calvo, Gonzalo, & San
Feliu, 2008), (Honig, 2008).

The analysis of the related works resumes what is proposed by (Börstler et al., 2002),three
primary factors,which influence the teaching of PSP, outstand: the work environment, the
coverage level, and the support tools. The work environment refers to the target audience, the
course level, and the subject content. The coverage level is associated with the applied PSP
practices. The support tools are related to the support means for the registration of every single
activity proposed by the PSP. This paper contributes with a new analysis factor associated with or
without the application of a learning strategy. Below are the obtained results of the PSP
implementation in different universities worldwide.

Table : Academic experiences of the PSP

University Target students
Level of

coverage
PSP supporttools

Learning

strategy

Lund(Runeson, 2003)
Undergraduate and

graduate
Full PSP1 Spreadsheets N/A

Zagreb (Car, 2003) Undergraduate PSP-Lite2 local development N/A

Purdue(Lisack, 2000) Undergraduate PSP-Lite Spreadsheets N/A

Carlos III(Bermón et

al., 2009)
Undergraduate PSP-Lite Student Workbook N/A

Umea Undergraduate PSP-Lite Local development N/A

Utah
Undergraduate and

graduate
Full PSP Local development N/A

Based on Table 1, it can be established that every single reported experience has a feature given
the context and the formation interests for its students.Having in mind the space limitation for the
article, a detailed analysis of every single academic experience in the implementation of the PSP
is not done.

1 It refers to the implementation of the entire body of knowledge of PSP.

2 It refers to a simplified or adapted version of PSP.

2 | SOFTWARE ENGINEERING INSTITUTE

1.3 METHODOLOGY

The following objectives for the development of this experimental research are defined.

• Analyze the state of the art and the most significant experience results worldwide of the use
of the PSP in the academia to identify their impact in the student formation process in
Software Engineering and the like, and that these can help as a reference for a theoretical
support of the research.

• Design the scenarios, activities, and learning resources that allow, by means of a formative
strategy, the appropriation and application of individual practices of the PSP.

• Conduct a pilot test with the Programming course students, in order to verify and assess that
the strategy contributes to the development of individual practices of software development of
students.

The research was piloted in the classroom. The populations under study were two groups of a first
course in Computer Programming of the Systems Engineering undergraduate program at the
Universidad Del Quindío. The methodology is shown in Figure 1.

Figure : Methodology for the research

1.3.1 Pre-test

The initial diagnosis applies an instrument with nine questions (Table 2) with options (Never -
Sometimes – Always). The questions sought to know the level of adoption of some individual
practices for software development in students. The number of students in the control and
experimental groups that answered the survey was 31 and 35 respectively.

Table 2: Questions and categories

Number Question Category

1 Register the time spent during the programming activity. Time

managemen

t

2 Register the interruption time during the programming activity.

3 Register the flaws that emerge in the making of a programming activity. Handling

SOFTWARE ENGINEERING INSTITUTE |3

and

managemen

t of flaws

4 Understandthe encoding flaws generated during programming.

5 Apply some methodology to solve flaws in the codification process.

6 Take into account encoding standards when programming. Size product

7 Estimate the number of code lines needed to build a program.

8 Plan activities to perform a programming job. Product

planning 9 Applies stages of a development process to build a program

With the pre-test exam applied to both groups, the level of homogeneity in each one of the
questions is analyzed, both for the experimental and control groups. To check the homogeneity of
the groups, an Analysis of Variance ANOVA (ANalysis Of VAriance) was run, whose response
variable is the qualification of the question, and the factor is the group with the control and
experimental levels. For each question the assumptions of randomness, the homogeneity of
variance, and the normal distribution of residualswere applied. When these assumptions were not
met, then the Kruskay and Wallisnon-parametric test was applied. Table 3 shows the results of
thestatistical analysis of each one of the questions.

Table 3: Homogeneity analysis per question

Question p_valor Variance

homogeneity

Shapiro-Wilknormal

distribution of residuals

Kruskay& Wallis non-

parametric test

1 0,1409 0,140908 4,35409E-15 0,1848
2 0,5739 0,573945 3,54809E-14 0,569942
3 0,2237 0,413037 7,81931E-10 0,162059
4 0,2356 0,0750583 4,44089E-16 0,204958
5 0,6374 0,808796 1,11022E-16 0,712758
6 0,1495 0,149459 1,26715E-10 0,1848
7 0,4727 0,0511165 1,0578E-9 0,451819
8 0,1023 0,617618 3,42777E-7 0,132956
9 0,4686 0,151367 1,7582E-10 0,48251

Based on the results above, it can be stated that both the control and the experimental groups are
homogeneous for the nine questions defined in the instrument, and it was decided to continue the
research methodology.

1.3.2 Learning strategy

The learning strategy was conducted with 23 students from the experimental group during 10
weeks of the academic semester. Parallel to the development of the subject content, the
fundamental concepts of PSP0,PSP0.1, and PSP1 levels were being incorporated. Six
programming exercises were proposed, which were solved directly in the laboratory course, under
the teachermonitoring. For the PSP 0.1 PSP0 levels,the first fourexercises were solved and the
remaining two were for the PSP1 level. The registration of each one of the activities was
performed on templates designed for that purpose, and the feedback of the results was done in the
following class highlighting the importance of the proposed activities.

4 | SOFTWARE ENGINEERING INSTITUTE

1.3.3 Thematic structure of the course

The course structure is defined by thematic units required in a first programming course. The
fundamental concepts of the PSP0, PSP0.1 and PSP1 levels were incorporated progressively.
Table 4 shows the thematic content and the PSP themes that were given in the course
transversally.

Table 4: Thematic content VS PSP themes

Unit Thematic content PSP topics

Java

Programming

Language

Variables, Operators and Expressions

Primitive Data Types

Objects concepts

• Software Quality Concepts

• Software Development Process

• Current process development

Conditional

Programming

Simple decisions (if, if-else)

Nested Decisions

Multiple decisions (switch)

Personal process reference

• Introduction to PSP

• Introduction to PSP0

• Time planning

Methods

Methods concepts

Methods that return value

Methods that do not return value

Parameter Passing

Reference personal process

• Time and control management PSP0

• Time and flaws registration

• Types of flaws standards

Iterative

Programming

Counters and Accumulators

Cycle conditioned at the end (do-while)

and conditioned at the beginning (while,

for)

Reference personal process – PSP0.1

• Size planning and measuring

• Encoding standards

Arrangements

Operations with arrangements

dimensional arrangements

Management methods

Reference personal process PSP0.1

• Encoding standards

• Process Improvement Proposal (PIP)
Personal Project Management – PSP1

The PSP Themes were oriented only in the experimental group; while in the control group, the
traditional thematic contentcourse was developed. To the PSP0 level practices, ateaching guide
with the theoretical foundations necessary for learning and implementing the following practices
was designed:

• Time registration for the completion of the project.

• Flaw registration and its types.

• Summary of the project plan.

• Standards to document and report the types of flaws.

In the PSP0.1 a guide for students to learn to perform the count of code lines (LOC) of their
programs was built, as well as documenting the activities of its development process in order to
identify opportunities for improvement in their work. Theelementstakenintoaccount for
thislevelwere:

SOFTWARE ENGINEERING INSTITUTE |5

• Definition of a standard for code line counting, and anencoding standard during product
construction process.

• Documentation of the Process Improvement Proposal (PIP).

For the PSP1, it was also designed a guide that explained using examples; how the template must
be filled out for the test report and the estimate for the size of the product.

1.3.4 Design of the learning strategy

For each one of the thematic units of the course, the learning scenarios which define the necessary
theoretical elements, the work methodology, and the activities undertaken by the students were
designed. Table 4 shows the description of the Iterative Programming thematic unit, and the same
was done for the rest of the course units.

Table 4: Thematic structure of the course

Unit Methodology Activities

Iterative
Programmin

g

The teacher presents the fundamental

concepts of PSP, the process script,

time control and registration in each

phase of the process. He will explain

the time log template which details

the actual working time and the

interruptions.

He will explain to students how to

perform the estimation of time for

their work, and a series of suggestions

to manage time when making a

programming job.

The student will read articles about the

fundamental concepts of PSP0 and PSP 0.1.

In each of the programming tasks, the student

must use the process script, and the teacher will

assignthe exercises 1A, 2A, 3A and 4th, so

students develop the proposed programs.

For each of the programming tasks, it is required

the delivery of the time template. Based on the

results delivered by the students, the teacher will

conduct a performance analysis of the group

works.

For each one of the activities, an evaluation plan based on criteria was defined which takes into
account the following aspects:

• Observation of attitudes and skills that students are developing.

• Students’ response facing the questions related to the individual development.

• Monitoring the development of practices that the students do in the lab.

• Monitoring to the tasks that students do during their independent work.

• Conducting of individual assessments.

These elements of formative character will have a summative evaluation in a range from 0 to 5.

1.4 RESULTS

In order to determine whether the intervention with the PSP practices in the experimental group
was successful;it was verified in the post-test if,in each one of the questions,the ownership of
homogeneity with the control group was retained.

6 | SOFTWARE ENGINEERING INSTITUTE

1.4.1 Post-test

The results obtained in the post-test show that the property of homogeneity of the groups is
preserved for questions 3, 6, 7, 8 and 9, so it can be said that the learning strategy for the
categories of product size and product planning did not have a significant impact within the
individual practices of software development.
For questions 1, 2, 4 and 5, the obtained results show that the homogeneity property of the groups
is not preserved; and therefore, for the categories of time management and flaw management, the
learning strategy was successful. For example, Figure 2 shows that for question 1, the
experimental group applies more this PSP practice than the control group.

Control Experimental
Grupo

1,3

1,5

1,7

1,9

2,1

2,3

2,5
p1

Figure 2: Question 1,Time control forpost-test

1.4.2 Analysis of the results

We compared the answers of the pre-test and post-test of the students intervened to construct a
"result" variable.Thus, if the post-test grade is higher than the pre-test one, the variable takes the
value of 1. If the grade is less or equal in the post-test, the variable takes the value of 0. If the
pretest and post-test graded the answer always with (3), the variable takes the value of 1. Thus, the
"result" variable has only two possible values 1 and 0; therefore, it is a discrete variable with
Bernoulli distribution and p = 0.5 because it is using the criterion that at least 50% of students will
improve from the pre-test to the post-test. The answers with value of 1 were addedand the variable
"number of students who improved with the intervention" was obtained, which due to be the sum
of variables with Bernoulli distribution corresponds to a variable with binomial distribution with n
= 23 (number of students from the experimental group), and the probability p = 0.5 indicates that
at least half of the students improved with the intervention strategy. Then, a system of hypotheses
that allowed selecting those questions where students improve their practicesarose. For the
experiment it is established a probability for error of 4.7% to say that the question in the
intervention was successful, which is equivalent to say that the results have a confidence level of
95.3%.

SOFTWARE ENGINEERING INSTITUTE |7

Figure 3: Binomial distribution for post-test

Figure3shows the binomial distribution for the 23 students from the experimental group with
p=0,5. Those questions where 16 students or more improve with the intervention are the ones that
allow saying that it was successful.

1.4.3 Analysis of the results from the experimental group

The quantitative results of the experimental group in the pre-test and the post-test show a
significant improvement in the nine questions applied to students. For example, in question 2 for
the pre-test related to the interruptions registrationpractice, 91% of students never apply it, and
9% sometimes. While the same question for the post-test shows that only 13% of students never
apply it, 74% sometimes, and 13% always do. Figure 4 shows the frequency of answersfor
questions 2 and 3.

Figure 4: Pre-test and post-test results of the experimental group

For question 4 in the post-test, 52% of students in the pre-test answer that they always manage the
flaws introduced during their individual work of software development. In question 5 on the
posttest, 74% of students always apply a methodology for the solution of flaws. In both questions,
it is evidencedan improvement in the outcomes.

8 | SOFTWARE ENGINEERING INSTITUTE

Figure 4: Pre-test and post-test results of the experimental group

Our results show that the experimental group improved on the post-test compared to the pre-test
in every question.

1.5 CONCLUSIONS

The development of this work showed a number of challenges associated with the learning of the
software process which is associated with the maturity of the students to recognize the value of a
discipline applied to the software process (issuethat they have not experienced in early stages yet),
and a forced introspection to know how the software is developed individually understanding their
development habits and practices to improve them. It was also necessary to consider some
theories about teaching strategies, which put in our particular context, involved the incorporation
of ideas about how to intervene current practices for students to learn. The most frequent
difficulties and mistakes of students were identified, and they were encouraged to reflect high
quality in their work.

The academic environment also requires political will and commitment from the academic
directors since the teachers, who teach the courses related to PSP practices, require spending a
great deal of time to give immediate feedback on the work and exercises of the students,
conducting permanent support, and also teaching the topics and concepts related to PSP. This
academic strategy becomes complex because teaching courses related to PSP practices requires a
greater dedication than in a regular course by the teacher and the student.

Based on the obtained results, we found that the incorporation of some PSP practices in students
of the experimentalcoursehave been successful regarding the adoption of the practices associated
with time management and registration, and the management and registration of flaws.

1.6 REFERENCES

Abrahamsson, P., & Kautz, K. (2002). Personal Software Process : Classroom Experiences from
Finland. Lecture notes in computer science, 2349, 175–185.

Bayona, S., Calvo, J. a., Gonzalo, C., & San Feliu, T. (2008). Teaching Team Software Process in
Graduate Courses to Increase Productivity and Improve Software Quality. 32nd Annual IEEE
International Computer Software and Applications Conference (pp. 440–446). Turku: Ieee.
doi:10.1109/COMPSAC.2008.135

Bermón, L., Fernandez, A., Sanchez, M., Javier, G.-, & Seco, A. (2009). Experiencias Docentes en la
Aplicación del Proceso Software Personal en Primero de Grado de Ingeniería Informática.

SOFTWARE ENGINEERING INSTITUTE |9

Fomento e Innovación con Nuevas Tecnologías en la Docencia de la Ingeniería (pp. 107–114).
Vigo.

Börstler, J., Carrington, D., Hislop, G. W., Lisack, S., Olson, K., & Williams, L. (2002). Teaching PSP :
Challenges and Lessons Learned. IEEE Software, 19(5), 42–48.

Car, Z. (2003). A method for teaching a software process based on the personal software process. 21
International Association of Science and Technology for Development (pp. 1–6). Innsbruck.

Cardona, S., & Bermúdez, R. (2012). Ambiente virtual de aprendizaje para la implementación de
prácticas de PSP y TPS en un curso de programación de computadores. IV Congreso
Iberoamericano “Soporte del Conocimiento con la Tecnología” (pp. 409–416). Bucaramanga.

El Eman, K., Shostak, B., & Madhavji, N. (1996). Implementing Concepts from the Personal Software
Process in an Industrial Setting Implementing Concepts from the Personal Software Process in
an Industrial Setting. Proceedings of the Fourth International Conference on the Software
Process (pp. 117–131). Brighton.

Honig, W. L. (2008). Teaching Successful “Real-World” Software Engineering to the “Net”
Generation: Process and Quality Win! 21st Conference on Software Engineering Education and
Training (pp. 25–32). Charleston: Ieee. doi:10.1109/CSEET.2008.38

Humphrey, W. (1995). A discipline for software engineering (p. 789). Addison-Wesley.
Lisack, S. K. (2000). The Personal Software Process in the Classroom : Student Reactions (An

Experience Report). Software Engineering Education and Training (pp. 169 – 175). Austin.
Prechelt, L., & Unger, B. (2001). An Experiment Measuring the Efects of Personal Software Process

(PSP) Training. IEEE Transactions on Software Engineering (pp. 465 – 472).
Rincón, R. (2010). Análisis y capitalización de las experiencias y lecciones aprendidas de la

implementación de PSP (Personal Software Process) y TSP (Team Software Process) desde el
sector académico a las empresas de software mexicanas. Informe Final Sabático. (pp. 12–15).
Medellín.

Runeson, P. (2003). Using Students as Experiment Subjects – An Analysis on Graduate and Freshmen
Student Data. Proceedings of the 7th International Conference on Empirical Assessment in
Software Engineering (pp. 95–102). Keele.

Towhidnejad, M., & Hilburn, T. (1997). Integrating the Personal Software Process (PSP) across the
Undergraduate Curriculum. Frontiers in Education Conference, 1997. 27th Annual Conference.
Teaching and Learning in an Era of Change (pp. 162–168). Pittsburgh.

Venkatasubramanian, K., Roy, S. B. T., & Dasari, M. V. (2001). Teaching and Using PSP in a Software
Engineering course : An Experience Report. Software Engineering Education and Training
Annual Conference. Chennai.

10 | SOFTWARE ENGINEERING INSTITUTE

	1.1 Introduction
	1.2 RELATED WORKS
	1.3 Methodology
	1.3.1 Pre-test
	1.3.2 Learning strategy
	1.3.3 Thematic structure of the course
	1.3.4 Design of the learning strategy

	1.4 Results
	1.4.1 Post-test
	1.4.2 Analysis of the results
	1.4.3 Analysis of the results from the experimental group

	1.5 CONCLUSIONS
	1.6 References

