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Abstract. Let f : M → M be a C1 diffeomorphism on a compact Riemannian
manifold M . Let Of denote the space of all SRB-like measures and for x ∈ M ,

pw(x) denote the limit set of { 1
n

∑n−1
j=0 δfj(x)}n∈N in weak∗ topology where

δy is the Dirac probability measure supported at y ∈ M. We state a sufficient

condition to prove that the set of points without physical-like behaviour

Γf = {x : pw(x) ∩ Of = ∅}
has full topological entropy, even though in general it always has zero Lebesgue
measure. In particular, this phenomena is valid for all C1 transitive Anosov
diffeomorphisms and time−1 maps of all C1 transitive Anosov flows. We
emphasize that the system is just required C1. The proof ideas are mainly

based on Pesin’s entropy formula and variational principle of saturated sets.

1. Introduction

Let f : M → M be a continuous map on a compact manifold M . Let m be a
Lebesgue measure normalized such thatm(M) = 1, and not necessarily f - invariant.
Let P denote the space of all probability measures, and Pf ⊂ P denote the space
of f -invariant probability measures, endowed with the weak∗ topology. For a point
x ∈ M we consider the following sequence{ 1

n

n−1∑
j=0

δfj(x)

}
n∈N

where δy is the Dirac probability measure supported at y ∈ M. Define the set
pωf (x) of probability measures:

pωf (x) =
{
µ ∈ P : ∃ ni → +∞ such that

∗
lim

i→+∞

1

ni

ni−1∑
j=0

δfj(x) = µ
}
.

We say that pωf (x) describes the asymptotic statistics of the orbit of x. It is
standard to check that pωf (x) ⊂ Pf . From [11] we know that pωf (x) is always
nonempty, compact and connected.

Recall that a measure µ ∈ P is called physical or SRB (Sinai-Ruelle-Bowen), if
the set

A(µ) = {x ∈ M : pωf (x) = {µ}}
has positive Lebesgue measure. The set A(µ) is called basin of attraction of µ. Now
let’s recall the definition of SRB-like measure [9].

Definition 1.1. (SRB-like measures, c.f. [9]) A probability measure µ ∈ Pf is
SRB-like (or observable or physical-like) if for any ε > 0 the set

Aε(µ) = {x ∈ M : dist(pωf (x), µ) < ε}
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has positive Lebesgue measure. The set Aε(µ) is called basin of ε−attraction of µ.

We denote with Of the set of all SRB-like measures for f : M 7→ M . It is
standard to check that every SRB-like measure for f is f -invariant. Let’s recall
some basic results related with SRB-like measures. We call basin of attraction
A(K) of any nonempty weak∗ compact subset K of probabilities, to

A(K) := {x ∈ M : pωf (x) ⊆ K}.

The following theorem is a basic characterization of SRB-like measures, which is a
reformulation of the main results of [9]:

Theorem 1.2. Let f : M → M be a continuous map on a compact manifold M .
Then the set Of of all SRB-like measures for f is the minimal weak∗ compact subset
of P whose basin of attraction has total Lebesgue measure.

In other words: Of is nonempty and weak∗ compact, and the minimal nonempty
weak∗ compact set that contains, for Lebegue almost all the initial states x ∈ M ,
the limits of the convergent subsequences of { 1

n

∑n−1
j=0 δfj(x)}n∈N.

Define

(1) ∆f = {x : pw(x) ⊆ Of}.

Note that ∆f is the maximal set such that all limit points of empirical measure of
points in this set are SRB-like. By Theorem 1.2, ∆f has Lebesgue full measure.
Let

(2) Γf = {x : pw(x) ∩ Of = ∅}.

The set Γf is called the set of points without physical-like behaviour. Obviously,
Γf ⊆ M \∆f and thus Γf has Lebesgue zero measure. However, in this paper we
will show for lots of smooth dynamics, the topological entropy of Γf can be large
and even equal to the full entropy.

Before stating main results we combine Γf with irregular set for consideration
together. Let

If = {x ∈ M : pwf (x) is not a singleton},
called irregular set of f . By weak∗ topology, x ∈ If if and only if there is some
continuous function ϕ : X → R such that the ergodic average

1

n

n−1∑
i=0

ϕ(f i(x))

does not converge as n → +∞. By Birkhoff Ergodic theorem, irregular set If has
zero measure for any ergodic measure and then by Ergodic Decomposition theorem
so does for any invariant measure. Since Γf has Lebesgue zero measure, we have

Proposition 1.3. Let f : M → M be a continuous map on a compact manifold
M . Then the set Γf ∩ If has zero measure not only for Lebesgue measure but also
for all invariant measures.

In strong contrast, we observe that Γf ∩ If may be ‘large’ in the sense of topo-
logical entropy. Now let us start to state the main result, in which the concepts of
g-almost product property and uniform separation will be introduced in section 2.2
and 2.3 respectively.

Theorem 1.4. Let f : M → M be a C1 diffeomorphism on a compact Riemannian
manifold M. Suppose that:
(H1) f has a dominated splitting TM = E ⊕ F for f such that E is not expanding
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and F is not contracting in the sense of SRB-like measures, that is, for any µ ∈ Of

and µ a.e. x,

lim inf
n→+∞

1

n
log ∥Dxf

n|E∥ ≤ 0, lim sup
n→+∞

1

n
logm(Dxf

n|F ) ≥ 0;

(H2) there is an invariant measure ν0 such that Pesin’s entropy formula fails, that
is, the metric entropy of ν0 is not equal to the integral of the sum of all nonnegative
Lyapunov exponents of ν0 a.e. x;
(H3) f has g-almost product property and uniform separation.
Then the set Γf ∩ If has full topological entropy.

It seems that the assumptions of Theorem 1.4 are so many and very strong.
However, it is suitable for all hyperbolic dynamics. That is,

Theorem 1.5. Let M be a compact Riemannian manifold and let f : M → M be
a C1 transitive Anosov diffeomorphism on M or be time-1 map of a C1 transitive
Anosov flow on M. Then Γf ∩ If has full topological entropy.

We emphasize that the system is just required C1. From [1] we know for a
C1 transitive Anosov diffeomorphism, If carries full topological entropy so that
Theorem 1.5 can be as a further refined observation of irregular points by combing
the physical-like behaviour.

This paper is organized as follows. In section 2 we will introduce some concepts
and some useful lemmas, and in section 3 we will prove Theorem 1.4 and Theorem
1.5.

2. Preliminaries

2.1. Entropy. Let µ ∈ Pf . Given ξ = {A1, · · · , Ak} a finite measurable partition
of M , i.e., a disjoint collection of elements of B(M) whose union is M , we define
the entropy of ξ by

Hµ(ξ) = −
k∑

i=1

µ(Ai) log µ(Ai).

The metric entropy of f with respect to ξ is given by

hµ(f, ξ) = lim
n→∞

1

n
logHµ(

n−1∨
i=0

f−iξ).

The metric entropy of f with respect to µ is given by

hµ(f) = sup
ξ

hµ(f, ξ),

where ξ ranges over all finite measurable partitions of M .
Let us recall the definition of entropy working for non-compact sets (see [6]). Let

Λn = {0, 1, 2, · · · , n− 1}. Let x ∈ M . The dynamical ball Bn(x, ε) is the set

Bn(x, ε) := {y ∈ M | max{d(f j(x), f j(y))| j ∈ Λn} ≤ ε}.

Definition 2.1. For a general subset E ⊆ M , let Gn(E, σ) be the collection of all
finite or countable covers of E by sets of the form Bu(x, σ) with u ≥ n. We set

C(E; t, n, σ, f) := inf
C∈Gn(E,σ)

∑
Bu(x,σ)∈C

e−tu

and

C(E; t, σ, f) := lim
n→∞

C(E; t, n, σ, f).
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Then

htop(E;σ, f) := inf{t : C(E; t, σ, f) = 0} = sup{t : C(E; t, σ, f) = ∞}
and the Bowen’s (Hausdorff) topological entropy of E is

(3) htop(f,E) := lim
σ→0

htop(E;σ, f).

It was proved by Bowen that htop(f,M) equals to the classical htop(f).
Now let us first state a basic fact that

Theorem 2.2.

htop(f,∆f ) ≤ sup
µ∈Of

hµ(f); htop(f,Γf ) ≤ sup
µ∈Pf\Of

hµ(f).

Proof. This can be deduced from the definition of ∆f or Γf and the estimate
of [6] for t = supµ∈Of

hµ(f) or supµ∈Pf\Of
hµ(f).

Theorem 2.3. [6, Theorem 2] Let f be a continuous map of a compact metric
space M . If we denote

QR(t) = {x : ∃µ ∈ pwf (x) s.t. hµ(f) ≤ t},
then htop(f,QR(t)) ≤ t.

�
2.2. g−almost product property. Firstly we recall the definition of specification
property which is stronger than g−almost product property, see [11, 17, 4, 5, 3, 19].

Definition 2.4. We say that the dynamical system f satisfies specification property,
if the following holds: for any ϵ > 0 there exists an integer Mϵ such that for any
k ≥ 2, any k points x1, · · · , xk, any integers

a1 ≤ b1 < a2 ≤ b2 · · · < ak ≤ bk

with ai+1 − bi ≥ Mϵ (1 ≤ i ≤ k − 1), there exists a point x ∈ M such that

d(f j(x), f j(xi)) < ϵ, for ai ≤ j ≤ bi, 1 ≤ i ≤ k.(4)

The original definition of specification, due to Bowen [4], was stronger.

Definition 2.5. We say that the dynamical system f satisfies Bowen’s specification
property, if f satisfies specification and besides for any integer p ≥ Mϵ + bk − a1,
there exists a point x ∈ M such that fp(x) = x satisfies (4).

Now we start to recall the concept g−almost product property in [16] (there
is a slightly weaker variant, called almost specification, see [20]). It is weaker
than specification property (see Proposition 2.1 in [16]). A striking and typical
example of g−almost product property (and almost specification) is that it applies
to every β−shift [16, 20]. In sharp contrast, the set of β for which the β−shift has
specification property has zero Lebesgue measure [7].

Definition 2.6. Let g : N → N be a given nondecreasing unbounded map with the
properties

g(n) < n and lim
n→∞

g(n)

n
= 0.

The function g is called blowup function. Let x ∈ M and ε > 0. The g−blowup of
Bn(x, ε) is the closed set

Bn(g;x, ε) := { y ∈ M | ∃Λ ⊆ Λn,#(Λn \ Λ) ≤ g(n) and

max{d(f j(x), f j(y))| j ∈ Λ} ≤ ε },
where #Γ denotes the cardinality of a finite set Γ.
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Definition 2.7. We say that the dynamical system f satisfies g−almost product
property with blowup function g, if there is a nonincreasing function m : R+ → N,
such that for any k ≥ 2, any k points x1, · · · , xk ∈ M , any positive ε1, · · · , εk and
any integers n1 ≥ m(ε1), · · · , nk ≥ m(εk),

k∩
j=1

f−Mj−1Bnj (g;xj , εj) ̸= ∅,

where M0 := 0,Mi := n1 + · · ·+ ni, i = 1, 2, · · · , k − 1.

2.3. Uniform separation. Now we recall the definition of uniform separation
property [16]. For x ∈ M, define

Υn(x) :=
1

n

n−1∑
j=0

δfj(x)

where δy is the Dirac probability measure supported at y ∈ M . For δ > 0 and
ε > 0, two points x and y are (δ, n, ε)-separated if #{j : d(f jx, f jy) > ε, j ∈
Λn} ≥ δn. A subset E is (δ, n, ε)-separated if any pair of different points of E are
(δ, n, ε)−separated. Let F ⊆ P be a neighborhood of ν ∈ Pf . Define

Mn,F := {x ∈ M |Υn(x) ∈ F},
and define

N(F ; δ, n, ε) := maximal cardinality of a (δ, n, ε)− separated subset of Mn,F .

Definition 2.8. We say that the dynamical system f satisfies uniform separation
property, if following holds. For any η > 0, there exist δ∗ > 0, ϵ∗ > 0 such that
for µ ergodic and any neighborhood F ⊆ P of µ, there exists n∗

F,µ,η, such that for
n ≥ n∗

F,µ,η,

N(F ; δ∗, n, ϵ∗) ≥ 2n(hµ(f)−η).

Now let us recall a basic relation between expansiveness and uniform separation
in [16].

Theorem 2.9. [16, Theorem 3.1] Let f be a continuous map of a compact metric
space M . If f is expansive (or asymptotically h-expansive), f satisfies uniform
separation.

2.4. Variational Principle for saturated sets. Now we recall a result from
[16]. The system f is said to be saturated (or f has saturation property), if for any
compact connected nonempty set K ⊆ Pf ,

htop(f,GK) = inf{hµ(f) |µ ∈ K},
where GK = {x ∈ M | pwf (x) = K}.

Lemma 2.10. (Variational Principle, [16, Theorem 1.1])
Let f be a continuous map of a compact metric space M with g−almost product
property and uniform separation property. Then f is saturated.

Remark that Lemma 2.10 is one key tool for all the proofs of our main results
in present article. It allows the entropy estimates to be reduced to the problem of
describing the various gap sets in terms of pwf (x).

On the other hand, from [16] if one does not have uniform separation proper-
ty, then the saturated property just holds for any singleton K. For convenience
to compare saturated property, we give a following notion called single-saturated
property. We say f is single-saturated, if htop(f,Gµ) = hµ(f) holds for any µ ∈ Pf ,
where Gµ = {x ∈ M | pwf (x) = {µ}}.
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Lemma 2.11. (Variational Principle, [16, Theorem 1.2])
Let f be a continuous map of a compact metric space M with g−almost product
property. Then f is single-saturated.

Remark that for any continuous map f of a compact metric space M , there is
a general fact (see Theorem 4.1 (3) in [16]): for any compact connected nonempty
set K ⊆ M(M,f),

htop(f,GK) ≤ inf{hµ(f) |µ ∈ K}, where GK = {x ∈ M | pwf (x) = K}.(5)

In particular, for any µ ∈ M(M,f), we have

htop(f,Gµ) ≤ hµ(f), where Gµ = {x ∈ M | pwf (x) = {µ}}.(6)

Theorem 2.12. If f satisfies g-almost product property, then

htop(f,∆f ) = sup
µ∈Of

hµ(f); htop(f,Γf ) = sup
µ∈Pf\Of

hµ(f).

Proof. By Lemma 2.11, every invariant measure µ satisfies that htop(f,Gµ) =
hµ(f). Since for any µ ∈ Of , Gµ ⊆ ∆f , then

htop(f,∆f ) ≥ sup
µ∈Of

htop(f,Gµ) = sup
µ∈Of

hµ(f).

Together with Theorem 2.2, one has htop(f,∆f ) = supµ∈Of
hµ(f).

Similarly, one gets the other equality. �

2.5. Dominated Splitting & Pesin Entropy Formula.

Definition 2.13. (Dominated Splitting) Let f : M → M be a C1 diffeomorphism
on a compact Riemannian manifold M . Let TM = E ⊕ F be a Df -invariant and
continuous splitting such that dim(E) · dim(F ) ̸= 0. We call TM = E ⊕ F to be a
(σ−)dominated splitting if there exists σ > 1 such that

∥Df |E(x)∥
m(Df |F (x))

≤ σ−1, ∀x ∈ M,

where m(A) = ∥A−1∥−1 for linear map A.

Remark that the continuity of the splitting in the definition is not necessary
because it can be naturally deduced from the required inequality in the dominated
splitting(for example, see [2]). Remark that

∥Dfk|E(x)∥
m(Dfk|F (x))

≤
k−1∏
i=0

∥Df |E(fi(x))∥
m(Df |F (fi(x)))

≤ σ−N ≤ σ−1,∀x ∈ M.

This means if TMM = E⊕F is a σ−dominated splitting of f for some σ > 1, then
for any integer k ≥ 1, TMM = E ⊕ F is a σ−dominated splitting for system fk.

There is an equivalent statement of dominated splitting. TM = E ⊕ F is a
dominated splitting if there exist C > 0 and 0 < λ < 1 such that

∥Dfn|E(x)∥
m(Dfn|F (x))

≤ Cλn, ∀x ∈ M, n ≥ 1.

Remark that Gourmelon ([10]) proved that there always exists an adapted metric
for which C = 1.

Now let us recall a result from [8].
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Theorem 2.14. [8, Theorem 1] Let f : M → M be a C1 diffeomorphism on a
compact Riemanian manifold M . If there is a dominated splitting TMM = E ⊕ F ,
then for any SRB-like measure µ, one has

(7) hµ(f) ≥
∫ dim(F )∑

i=1

χi(x)dµ =

∫
log | detDf |F | dµ,

where χ1(x) ≥ χ2(x) · · · ≥ χdim(M)(x) denote the Lyapunov exponents of x ∈ M.

Combining with Ruelle’s inequality, Theorem 2.14 have a direct corollary as
follows. Let PEf denote the set of all invariant measures satisfying Pesin’s entropy
Formula, that is,

PEf := {µ ∈ Pf : hµ(f) =

∫ ∑
χi(x)≥0

χi(x)dµ},

where χ1(x) ≥ χ2(x) · · · ≥ χdim(M)(x) denote the Lyapunov exponents of x ∈ M.

Corollary 2.15. Let f : M → M be a C1 diffeomorphism on a compact Riemanian
manifold M with a dominated splitting TMM = E ⊕ F . Let µ ∈ Of . If for µ a.e.
x,

lim inf
n→+∞

1

n
log ∥Dxf

n|E∥ ≤ 0, lim sup
n→+∞

1

n
logm(Dxf

n|F ) ≥ 0;

then µ ∈ PEf , that is,

(8) hµ(f) =

∫ ∑
χi(x)≥0

χi(x)dµ =

∫ dim(F )∑
i=1

χi(x)dµ =

∫
log | detDf |F | dµ.

Moreover, if f ∈ C1+α, by classical Pesin theory ([13]) µ ∈ PEf implies (in fact,
is equivalent) that µ has absolutely continuous conditional measures on unstable
manifolds.

In particular, we have a following consequence of Corollary 2.15, since by Theo-
rem 1.2 we know that Of ̸= ∅.

Corollary 2.16. Let f : M → M be a C1+α diffeomorphism on a compact Riema-
nian manifold M with a dominated splitting TMM = E ⊕ F . If for any invariant
measure µ and µ a.e. x,

lim inf
n→+∞

1

n
log ∥Dxf

n|E∥ ≤ 0, lim sup
n→+∞

1

n
logm(Dxf

n|F ) ≥ 0;

then there is at least one invariant measure which is SRB-like, satisfies Pesin’s
entropy formula and has absolutely continuous conditional measures on unstable
manifolds.

2.6. Basic description of PEf .

Theorem 2.17. Let f : M → M be a C1 diffeomorphism on a compact Riemanian
manifold M . Then PEf is a convex subset of Pf , and PEf either is equal to Pf

or it can not contain interior points.

Proof. It is easy to check that PEf is convex. Now we prove the other part.
Suppose PEf ̸= Pf . By contradiction, assume that there exists µ ∈ PEf and a
neighbourhood U ⊆ PEf of µ. Take ν ∈ Pf \ PEf . Then it is easy to check that

{θµ+ (1− θ)ν : θ ∈ [0, 1)} ⊆ Pf \ PEf .

However, if taking θ close to 1, θµ + (1 − θ)ν should be in U ⊆ PEf , which is a
contradiction. �
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Theorem 2.18. Let f : M → M be a C1 diffeomorphism on a compact Riemanian
manifold M with a dominated splitting TMM = E⊕F . If for any invariant measure
µ and µ a.e. x,

lim inf
n→+∞

1

n
log ∥Dxf

n|E∥ ≤ 0, lim sup
n→+∞

1

n
logm(Dxf

n|F ) ≥ 0;

and the entropy function h·(f) : Pf → [0,+∞), µ → hµ(f) is upper-continuous,
then PEf is non-empty, convex and compact.

Proof. By assumption and Corollary 2.15 PEf is non-empty. By Theorem 2.17
PEf is convex. By assumption, for any invariant measure µ ∈ Pf ,∫ ∑

χi(x)≥0

χi(x)dµ =

∫ dim(F )∑
i=1

χi(x)dµ =

∫
log | detDf |F | dµ.

Suppose µn ∈ PEf and µn → µ. Since dominated splitting is always continuous
[2], then∫ ∑

χi(x)≥0

χi(x)dµ =

∫
log |detDf |F | dµ = lim

n→∞

∫
log | detDf |F | dµn

= lim
n→∞

∫ ∑
χi(x)≥0

χi(x)dµn = lim
n→∞

hµn(f) ≤ hµ(f).

On the other hand, by Ruelle’s inequality,

hµ(f) ≤
∫ ∑

χi(x)≥0

χi(x)dµ.

Thus µ ∈ PEf . �
Remark 2.19. (1) It is well-known that any Anosov diffeomorphism satisfies the
assumptions of Theorem 2.18 and every periodic measure does not satisfy Pesin’
entropy formula. Thus for Anosov case, PEf is always non-empty, convex, compact
and does not contain interior point.
(2) Let f be the time-t (t ̸= 0) map of a Anosov flow of a compact Riemannian
manifold X. In this case, f is partially hyperbolic with one-dimension central
bundle and satisfies conditions restricted on the sum of stable and central bundle,
and unstable bundle. Then f is far from tangency so that f is entropy-expansive
which implies the upper-continuity of entropy function h·(f) (see [14] or see [12, 15]).
Note that every periodic measure of flow is still invariant for f and does not satisfy
Pesin’s entropy formula. Thus for time-t map f of a Anosov flow, PEf is always
non-empty, convex, compact and does not contain interior point.

3. Proof of Theorems 1.4 and 1.5

Firstly let us prove a general proposition. Let f : M → M be a C1 diffeomor-
phism on a compact Riemannian manifold M. Define Γ∗

f := {x : pw(x)∩PEf = ∅}.
Given a continuous function ϕ : X → R, let

Rϕ
f := {x ∈ X | ergodic averages

1

n

n−1∑
i=0

ϕ(f i(x)) converge as n → +∞}.

For convenience, we call Rϕ
f to be regular set w.r.t. ϕ (simply, ϕ-regular set). Define

the ϕ-irregular set Iϕf = X \ Rϕ
f . If C0(X) denotes the space of all continuous

functions on X, note that

If =
∪

ϕ∈C0(X)

Iϕf .(9)
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Proposition 3.1. Let f : M → M be a C1 diffeomorphism on a compact Rie-
mannian manifold M. Suppose that f is saturated, PEf ̸= ∅ and Pf \ PEf ̸= ∅.
Then

(A). For any ϕ ∈ C0(X), if

inf
ω∈Pf

∫
ϕdω < sup

ω∈Pf

∫
ϕdω,(10)

then Γ∗
f ∩ Iϕf carries full topological entropy.

(B). The set Γ∗
f ∩ If has full topological entropy.

Proof of Proposition 3.1 (A). We divide the proof into two cases.

Case 1. supω∈PEf
hω(f) < htop(f).

Fix h satisfying supω∈PEf
hω(f) < h < htop(f). By Variational Principle [21], there

is µ1 ∈ Pf such that hµ1(f) > h > supω∈PEf
hω(f). Thus µ1 ∈ Pf \ PEf . Take

τ ∈ (0, 1) close to 1 enough such that τhµ1(f) > h. By assumption of (10) we can
take ρ0 ∈ Pf such that

∫
ϕdρ0 ̸=

∫
ϕdµ1. Let µ2 = τµ1 + (1− τ)ρ0. Then∫

ϕdµ1 ̸=
∫

ϕdµ2(11)

and
hµ2(f) = τhµ1(f) + (1− τ)hρ0(f) ≥ τhµ1(f) > h.

It follows that µ2 ∈ Pf \ PEf .
Let

K = {θµ1 + (1− θ)µ2 : θ ∈ [0, 1]}.
Then each ω ∈ K satisfies that hω(f) ≥ min{hµ1(f), hµ2(f)} > h and thus ω ∈
Pf \ PEf . It follows that GK ⊆ Γ∗ ∩ Iϕf . In other words, for x ∈ GK , pwf (x) = K

so that using (11) we have x ∈ Iϕf by weak∗ topology and moreover, pwf (x) = K ⊆
Pf \ PEf which implies x ∈ Γ∗

f .
On the other hand, since f is saturated, then

htop(f,Γ
∗
f ∩ Iϕf ) ≥ htop(f,GK) = inf

ω∈K
hω(f) = min{hµ1(f), hµ2(f)} > h.

By arbitrariness of h, we complete the proof of Case 1.

Case 2. supω∈PEf
hω(f) = htop(f).

By assumption we can take µ0 ∈ PEf and η0 ∈ Pf \ PEf ..
Fix ϵ > 0. Take µ1 ∈ PEf such that hµ1(f) > htop(f)− ϵ. If there is some ω0 ∈

Pf \ PEf such that
∫
ϕdω0 ̸=

∫
ϕdµ1, take ν0 = ω0. Otherwise,

∫
ϕdη0 =

∫
ϕdµ1

and by assumption of (10) we can take ρ0 ∈ PEf such that
∫
ϕdρ0 ̸=

∫
ϕdµ1. Let

ν0 = 1
2η0+

1
2ρ0. Then for both cases of the chosen measure ν0, we have ν0 ∈ Pf \PEf

and
∫
ϕdµ1 ̸=

∫
ϕdν0.

Take t1 ̸= t2 ∈ (0, 1) close 1 enough such that min{t1, t2}hµ1(f) > htop(f) − ϵ.
Let µ = t1µ1 + (1− t1)ν0 and ν = t2µ1 + (1− t2)ν0. Then∫

ϕdµ ̸=
∫

ϕdν.(12)

Let
K = {θµ+ (1− θ)ν : θ ∈ [0, 1]}.

Since µ1 ∈ PE(f) but ν0 ∈ Pf \PEf , then for any τ ∈ [0, 1), τµ1+(1−τ)ν0 ∈ Pf \
PEf . In particular, µ, ν ∈ Pf \PEf . It follows that for any ω ∈ K, ω ∈ Pf \PEf .

It follows that GK ⊆ Γ∗∩Iϕf . More precisely, for x ∈ GK , pwf (x) = K so that using

(12) we have x ∈ Iϕf by weak∗ topology and moreover, pwf (x) = K ⊆ Pf \ PEf

which implies x ∈ Γ∗
f .
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On the other hand, since f is saturated, then

htop(f,Γ
∗
f ∩ Iϕf ) ≥ htop(f,GK) = inf

ω∈K
hω(f) = min{hµ(f), hν(f)} > htop(f)− ϵ.

By arbitrariness of ϵ, we complete the proof of Case 2.

(B). By assumption there are two different invariant measures µ ̸= ν. By weak∗

topology, there is a continuous function ϕ ∈ C0(X) such that
∫
ϕdµ ̸=

∫
ϕdν. In

other words,

inf
ω∈Pf

∫
ϕdω < sup

ω∈Pf

∫
ϕdω.

By (A) Γ∗
f ∩ Iϕf carries full topological entropy and thus Γ∗

f ∩ If also has full

topological entropy, since Iϕf ⊆ If by (9). �

Proof of Theorem 1.4 From assumption (H2), Pf \ PEf ̸= ∅. By assumption
(H1) and Corollary 2.15 PEf contains Of and thus is non-empty. Moreover, Of ⊆
PEf implies that

Γ∗
f ⊆ Γf .(13)

By assumption (H3) and Lemma 2.10, f is saturated. Thus, one can use (13) and
the case (B) of Proposition 3.1 to complete the proof. �

Proof of Theorem 1.5. We firstly verify the assumptions of Theorem 1.4.

(1) diffeomorphism case. Condition (H1) is obvious. It is well-known that tran-
sitive Anosov diffeomorphism has specification property which is stronger than
g-almost product property and it is expansive which implies uniform separation
(by Theorem 2.9) so that condition (H3) holds. For the condition (H2), one just
consider a periodic measure.

(2) flow case. As discussed in the second part of Remark 2.19, condition (H1)
and (H2) holds, and moreover the time-1 map f is entropy-expansive which implies
unform separation (by Theorem 2.9). From [19] we know f satisfies specification
(even though the shadowing point may be not periodic) which is stronger than
g-almost product property.

Then, we can complete the proof by using Theorem 1.4. �
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