
Instituto de Computación
Facultad de Ingenieŕıa
Universidad de la República
Montevideo, Uruguay

Master thesis

Towards Secure Distributed Computations

Author: Felipe Zipitŕıa
fzipi@fing.edu.uy

7th November 2008

Supervisor: PhD. Gustavo Betarte
gustun@fing.edu.uy

Advisors: PhD. Gustavo Betarte, PhD. Tamara Rezk
gustun@fing.edu.uy,Tamara.Rezk@sophia.inria.fr

To Patricia and Melina

Contents

1. Introduction 7
1.1. Motivation . 7
1.2. Description . 9
1.3. Contribution . 10
1.4. Methodology . 11
1.5. Organisation . 12

2. Type-safe Distributed Computations 13
2.1. A review of type and abstraction safety 13

2.1.1. Types . 14
2.1.2. Type-Safety . 14
2.1.3. Behaviour . 15
2.1.4. Abstraction safety . 15

2.2. Concepts of distributed computations . 16
2.2.1. Type naming . 16
2.2.2. Coloured brackets . 17
2.2.3. Marshalling . 19
2.2.4. Exchanging data between hosts: to trust or not to trust 20
2.2.5. Type safety with active adversaries 21

2.3. A distributed language: Acute . 21
2.3.1. Syntax and Semantics . 22
2.3.2. Features of Acute . 23

2.3.2.1. Type-safe distributed interaction 23
2.3.2.2. Dynamic rebinding . 23
2.3.2.3. Concurrency . 24
2.3.2.4. Versions . 24

2.3.3. Acute and abstraction safety . 25

3. Proof Carrying Results 26
3.1. Introduction . 26
3.2. Proof carrying results . 28
3.3. Certifying algorithms . 30
3.4. Result certification examples . 31
3.5. Correct checkers . 35
3.6. Towards a PCR infrastructure . 35

3

Contents

4. A PCR Infrastructure for ADT values 37
4.1. Abstraction-safety and PCR . 37

4.1.1. Motivation . 37
4.1.2. A Protocol for PCR distributed computations 38

4.2. A PCR Infrastructure . 39
4.2.1. Primitives for distributed computation 39
4.2.2. Infrastructure model . 40

4.3. Implementing the infrastructure in Acute 41
4.3.1. Certified result communication in Acute 41
4.3.2. Acute instantiation of the protocol 43

4.4. Extension of the Acute language . 44
4.4.1. Overview . 44
4.4.2. In depht modifications . 46
4.4.3. Certificate checking . 50

5. Case Study: Certified Prime Computation 53
5.1. Scenario . 53
5.2. Pocklington certificates . 54
5.3. Simple test case . 55
5.4. Towards a distributed certifying infrastructure 58
5.5. Extending the protocol . 58
5.6. Protocol example with prime numbers . 60

6. Conclusions, related and further work 62
6.1. Conclusions . 62
6.2. Future work . 63
6.3. Related Work . 64

A. Extension of Acute language 75

B. Glossary 76

C. Demo source code 77
C.1. Demo examples . 77

C.1.1. Prime number generator . 77
C.1.2. Sender example . 77
C.1.3. Receiver example . 77

D. Acute Syntax 79

4

List of Figures

2.1. Execution error sets . 15
2.2. Transmission . 20
2.3. An adversary intercepting a message . 20
2.4. Altering message . 21
2.5. Acute syntax . 22

3.1. Proof carrying code example . 26
3.2. A maze . 27
3.3. Follow the dots to solve the maze . 27
3.4. Basic PCR approach . 28
3.5. Complex PCR . 29
3.6. Certified function . 30
3.7. Planar graph . 34
3.8. K5 and K3,3 graphs . 34

4.1. Marshal example . 38
4.2. An active adversary . 38
4.3. Protocol . 39
4.4. First flow . 39
4.5. Second flow . 40
4.6. Asking for a proof . 40
4.7. Infrastructure model . 41
4.8. Adversary can not modify values only . 42
4.9. Architecture of the connection with COQ 51
4.10. Full proof sequence . 51

5.1. Alice and Bob . 53
5.2. Alice and Server . 53
5.3. Extension of the protocol . 59

6.1. PGIP Architecture . 65

5

Listings

2.1. Example Seed module . 18
2.2. Example Seed module, compiled . 18
2.3. Colored brackets . 19
2.4. Dynamic rebinding of modules . 24
2.5. Version example . 25

4.1. Model example . 43
4.2. Fragment of ast.ml file: definition of certificate 45
4.3. Fragment of ast.ml file: additions for marshalling 46
4.4. Fragment of lexer.mllp file . 46
4.5. Fragment of parser.mlyp file: certificate definition in user source code 47
4.6. Fragment of parser.mlyp file: certificate addition to (un)marshal in user source

code . 48
4.7. Fragment of parser.mlyp file: at unmarshal, we must recognise certificates . . 48
4.8. Fragment of eval.ml file: filling the structure to be sent 49
4.9. Fragment of eval.ml file: calling our oracle at unmarshal time 49

5.1. Alice’s code . 55
5.2. Bob’s code . 56
5.3. Coq Program . 56
5.4. Result of execution . 57

A.1. Acute command line extended syntax . 75

C.1. Sender’s code . 77
C.2. Receiver’s code . 77

6

1. Introduction

”Q: Why bother doing proofs about programming languages? They are almost
always boring if the definitions are right.

A: The definitions are almost always wrong.” — Pierce 2002

1.1. Motivation

Since the beginning, computers have helped humans do lots of different computations.
We always had mathematical problems — each one bigger than the other — that we
found how to represent in such a way that computers could help us solve. With the need
to solve larger problems, arises the dependency on other parties to do complementary
computations. Communications with other computers developed to form networks of
computers. Proportionally with this increase in communications, computing power has
been upgraded, by using remote computers to solve complex problems cooperatively.

Nowadays, there are plenty of networks that work in a cooperative way and form what
we know as grids of computers. These grids serve a lot of purposes, and they are used
with good results for intensive calculation, because the joined computing power aids
in solving any kind of complex functions. To cope with these new requirements and
facilities, programming languages had to evolve into new paradigms, including facilities
to do distributed computing in a straightforward way.

Andrews (And82) gives a definition for distributed programming language: it is a
“concurrent language in which process interaction is based on message passing rather
than shared variables”. Using this approach, the underlying network is made transparent
to the programmer. How the network is accessed and where processes are located should
be avoided as a concern for the programmer.

Two key components are contained in a distributed programming language: processes
and channels. A process is a sequential program that contains local variables and
statements. A channel is a communication path that connects processes, and processes
interact by sending messages to and receiving messages from the channels that are
accessible to them. These channels can also be typed for communications.

Most programming languages provide the programmer with a way of classifying their
variables by using a type system. A type system is a component of a programming
language which keeps track of the types of variables and all other expressions in a program.
These type systems are used to determine if programmes are well behaved with respect
to some properties.

For example, type-safety is a property concerned with how much a programming
language protects its own abstractions. Type-safety is usually viewed as two properties of

7

1. Introduction

the semantics of the programming language: progress and (type-) preservation. Intuitively,
this means that terms approved by the type system should never be in an incorrect state,
where computation cannot continue. Not every programming language has this property,
and in the ones that are distributed it is more difficult to conceive.

This happens because on a single computer type safety is usually guaranteed by
the compiler. Nevertheless, in the context of distributed programming, the problem
of type-safety has additional difficulties. One particular defined type, defined in a
host, may have a different implementation in another, different invariants, or the same
implementation but another name. Another important property to take into account is
abstraction-safety.

Normally, a program is decomposed into a series of modules, each of these modules
is used to represent an abstraction of the problem, once identified. Again, types have
a fundamental role in this procedure. To make these modules more reusable in other
conditions, the introduction of Abstract Data Types (ADTs) allows programmers to
create and export the particular functions they want. These data types are used as an
interface between an exported implementation and a real implementation. They are also
created to preserve some properties. The defined operations on this type are the only
means of interacting with values of this particular type. Only the operations defined
inside this type have access to the information.

If the programming language semantics and the type system guarantee that the
encapsulation provided by type abstraction can never be breached, then the language is
called abstraction safe. Note that abstraction safety is a stronger property than mere
type safety (but generally it cannot exist without the latter). On a single computer
it is usually guaranteed by the compiler. Finally, if we want to have a distributed
programming language, it will be desirable to preserve abstraction safety throughout the
entire distributed system.

However, this changes radically when we begin to transmit data over the network. Data
can be modified, lost, or attacked. After the creation and utilisation of such languages, an
aspect remaining to be introduced is the security properties of these computations. The
security properties of languages that execute on a single host are hard to maintain. We
must take increased precautions when dealing with lots of hosts and complex networks.
First of all, distributed programming languages must achieve correctness in their own
abstractions: they must satisfy type-safety and abstraction safety, among other properties.

There have been efforts towards securing the execution of remote code. There is a
technique named Proof Carrying Code (NL96), where code sent to another process has a
proof that complies with some specification. This proof is a formal safety proof, called
certificate, and shows that this code complies with certain specification of safety rules.
This proof can be used, with the help of a proof checker, to verify compliance of the
certificate to the safety rules.

How can abstract values be secured, in the context of a distributed programming
language? We propose the use of a novel technique, called Proof Carrying Results (BP06).
This technique is based on Necula’s proof carrying code. Basically, the result of some
computation comes equipped with a certificate, or witness, that can be used to with
abstract types.

8

1. Introduction

Let’s suppose that we want to have secure computation involving abstract data types.
One host asks for some computation to a remote host. This computation is performed
using abstract types. After that, the value is returned to the caller. Is it possible for the
caller to know if the value complies with the invariants of the abstract type? Instead, if
the value comes with a witness that the computation was performed correctly, the caller
can verify this witness and know that the value was generated in a good way.

There are many ways for a host to check the correctness of this value, by using the
associated witness. On one hand, it can be verified using a custom made checker for the
particular abstract type. This way is prone to errors, in the creation of a correct checker
for this values. On the other hand, a proof checker can be used as a reliable tool for
checking correctness. It is more general than the other particular solution, because it can
be used for any type (abstract or not).

Throughout this thesis work, we will show how to add the PCR technique to a
distributed programming language. The supporting infrastructure for the technique is
introduced along with it. For checking the values and associated witnesses produced by
some host, we use a proof checker for a precise and reliable verification. In the following
description we continue with more detailed aspects of the work done.

1.2. Description

Functional programming is a paradigm that treats computation as the evaluation of
mathematical functions. Functional programming languages implement the concepts
introduced by this paradigm. Usually, they are modelled using λ calculus, but other
variants exist. Along this line we have languages like ML, Haskell and (Pure)Lisp. This
work will have its focus on ML-like languages.

As part of the evolution in grid computing, some functional programming languages
were adapted to handle these new grid requirements. To be used in distributed contexts,
the calculi had to be extended with new paradigms. Theoretic support for concurrent and
distributed programming was conceived. For concurrent programming the π calculus was
created, and this formalism was extended for mobility on the ambient calculus. From these
approaches, new functional languages were created. Examples of concurrent programming
languages are Pict (PT97), occam-pi (INM84) and Concurrent Haskell (JGF96). In the
case of distributed programming languages, we can mention Nomadic Pict (Woj00; SW99),
Alice (Kor01)and Acute (SLW+04b).

This work is concerned with correctness and safety in distributed languages, with focus
on ML-like languages and the properties they have. To this aim, we will use a language
called Acute. This language was born for doing research in distributed programming, and
was created as a joint effort of the University of Cambridge and INRIA Rocquencourt.

In Acute we have modern primitives for interaction between cooperating programmes.
Its main features involve: type-safe marshalling of arbitrary values by using two primitives,
marshal and unmarshal. As names are important in a distributed context, type names
are hashed to uniquely identify types across the entire distributed system. In addition
to this, type names are generated (freshly and by hashing) to ensure that type equality

9

1. Introduction

tests suffice to protect the invariants of abstract types. To ensure that name equality
tests suffice for type-safety of associated values, expression-level names generated, e.g.,
values carried on named channels. When some value has been sent to another host using
the marshal primitive, it is rebounded to local resources in a controlled dynamic way.
Finally, there is a technique that packs threads and mutexes (called thunkification) that
can be used to support computation mobility.

These features are a large part of what is needed to produce a typeful distributed
programming. This language has been used to enable sophisticated infrastructure
development. For example, there are implementations of Nomadic Pict and JoCaml as
simple Acute libraries.

Acute has powerful properties: type and abstraction safety are guaranteed along the
distributed system. Among the main design choices in Acute, was the focus on typing
and naming issues. But there are problems, clearly documented, when unmarshaling
values of abstract types. If the value marshalled is of an abstract type, the representation
could not be available at unmarshal time. Therefore, in this case: how can it be assured
that this value was generated by a well-behaved Acute run-time?

What happens when there are entities that can tamper with data transmitted between
hosts? The presence of active adversaries in the networks changes the scenario. If
this situation occurs, safety can be no longer guaranteed. In this case, an additional
check is that the marshalled value is a well-formed representation of something of that
type. Nevertheless, the implementation of that type could be used for checking types at
unmarshal time. But this implementation is not available, and especially in the case of
abstract types. This limits the language to a simple decision to handle this case: to work
only in a trusted scenario, or to marshal only values of concrete types.

Throughout this work we will try to overcome this particular limitation of the Acute
language. We will extend the language to support marshalling of abstract types in a
non-trusted scenario. For this purpose, we will introduce the PCR technique into the
language, and a supporting infrastructure for it that will end increasing the properties of
safety in a distributed context. The next section summarises the contributions of this
work.

1.3. Contribution

This thesis has contributed in three main aspects:

• an infrastructure has been defined and implemented for supporting the technique
of proof carrying results,

• the Acute distributed programming language has been extended, with a mechanism
that permits the exchange of abstract values in a certified way, and

• for doing the verification of the results, this infrastructure has been connected with
the COQ proof checker..

10

1. Introduction

An important aspect of the definition of the infrastructure, is that it can be used in other
places where there is a need for using the proof carrying results technique and not only in
this particular case. It is independent from the language, and also from the proof checker
used.

For the Acute language, a solution is proposed for a problem previously detected.
This solution uses the infrastructure defined here, and its implementation is available
for further testing (Zip08). This was achieved by increasing abstraction safety when
exchanging values of abstract types, extending the marshal/unmarshal primitives of the
language itself. In order to achieve this, we used the technique of proof carrying results,
where values transmitted to other hosts carry a witness that proves the computation has
been done in a correct way. For the process of verifying that the witness certifies these
transmitted values, we introduced a proof checker.

The proof checker is used as a reliable tool to prove that the certificates can be verified
correctly. In this step we used the COQ proof assistant, but without interacting with it;
only as a verification tool. Any other trustworthy proof chcker can be considered. The
proofs are made over these values of abstract types and their properties, carried in a
certificate.

1.4. Methodology

The Acute language was initially conceived for trust, when transmitting values over the
network. We wanted to prove if abstraction safety in the Acute distributed language
could be broken by tampering with data. Therefore, having a proof of concept and
discovering how easy or difficult it was seemed a good starting point.

In due course, we constructed a simple example that effectively showed us that it
was easy to circumvent abstraction-safety and change the data to break abstractions.
Understanding all the subtleties of the marshalling process including its semantic and
implementation was a must for this step. The marshalling process is an important
feature, and includes concepts for maintaining abstractions. The technique relies on the
concept of Coloured Brackets (LPS+03). This is technically delicate (and not needed for
implementations, which can erase all brackets) but provides useful clarity in a setting
where abstraction boundaries may be complex, with abstract types shared between
programs. The semantics preserves also the internal structure of hashes. The relevant
parts and dependencies in the implementation are distributed in various files.

In addition to this, we identified the precise place where we would plug-in our
infrastructure, in order to have a more secure language. After finding this spot, we created
the necessary binding for connecting the language to our verification infrastructure. The
binding with the COQ (dt08a)proof assistant required the study of the different ways of
communication with it. Now we proceed to describe the organisation of this document.

11

1. Introduction

1.5. Organisation

Chapter 2 will begin by explaining what type systems are, and what properties they have.
We will focus on two of these properties: type-safety and abstraction-safety, and how
they are viewed in a distributed setting. In addition to this, we will present some notions
about distributed computations and primitives in this context, namely, marshalling and
naming. Finally, we will introduce some security concerns in a distributed environment,
and discuss how they affect the presented concepts of type systems.

In Chapter 3 we will introduce proof carrying results. The chapter begins with
a description of this technique, and continues with its supporting algorithmic base:
certification algorithms. There are many examples shown there of algorithms that can
be used with certification in mind, the lack of those algorithms for other cases is also
mentioned.

After presenting the context of this work in detail, in Chapter 4 we present our take
on attempt to improve the safety of the Acute programming language, by means of using
the technique presented and introducing an infrastructure for it.

There is a full case study in Chapter 5, where the infrastructure presented is used to
solve a problem: how to certify prime number generation.

The conclusions and future work can be viewed in Chapter 6. The source code of the
extensions programmed into the Acute language is mentioned in Appendix A.

12

2. Type-safe Distributed Computations

This chapter begins introducing type systems in programming languages, and two major
properties that we will be referring to throughout this document: (type-) safety and
(type-) abstraction. There are many points of view regarding type systems in general,
and the literature on them and their related properties is extensive. We will be following
two authors, Luca Cardelli (Tuc97) and Benjamin C. Pierce (Pie02), throughout the
definitions and terms introduced here. We will continue with concepts of distributed
computations, with focus on marshalling. We shall also analyse the preservation of these
properties in the context of a distributed programming language, and in the presence of
active adversaries.

2.1. A review of type and abstraction safety

This review begins with a basic explanation of type systems. Before further analysis, we
must talk about errors in programming languages, and how these errors are handled by
them.

We define an execution error as an error that appears at run-time, and was unexpected
by the programmer. Not surprisingly, to prove that we will not have execution errors is a
difficult task. If we treat the lack of execution errors in a program as a property, then we
say that a language is type sound when that property holds for all the possible runs of a
program that can be expressed within this language. To have a proof that a language is
type sound requires a tremendous amount of work and a lot of careful analysis. This
is why a discipline emerged to carry out formal analysis, classification, and study of
type systems. The formalisation of type systems needs to elaborate a common language
with precise notations and definitions, and additional formal proof that can give, at last,
confidence in these definitions.

A type system is a component of a typed language which keeps track of the types
of variables and all other expressions in a program. These type systems are used to
determine if programs are well behaved. We will introduce types in 2.1.1, and the notion
of program behaviour in section 2.1.3.

Besides, we must note that not all the programming languages have a type system. ..
These languages are called untyped languages, and the ones that have a type system are
called typed languages. In the next section we present a definition for type.

Ultimately, one of the major aims of having a type system in a programming language is
to prevent the occurrence of execution errors (Car96). This informal statement motivated
a lot of study of type systems, but it needs to be extended and precised. The next
sections will introduce terminology and define commonly used terms in this context.

13

2. Type-safe Distributed Computations

2.1.1. Types

It is common practise for a programmer to introduce variables when programming. The
type of a variable can be viewed as an upper bound for the range of values this variable
can have during the execution of a program. For instance, if we have a variable v of type
int it is supposed to have only integer values during the execution of a program. Also, if
v has type int, then the integer expression nonzero(v) has a sensible meaning in every
run of the program. We call languages where we can give variables nontrivial types typed
languages.

In addition to this, a language that has a universal type that contains all values is
called untyped language. Now we proceed to discuss type safety.

2.1.2. Type-Safety

Resuming the topic of errors, there are errors that unexpectedly abort the execution of a
program. These are called trapped errors. Furthermore, there are errors which are not
detected until some time later, and are responsible for unpredictable program behaviour.
These are called untrapped errors. There are numerous examples of both cases: a division
by zero is a common example of a trapped error; accessing a valid memory address in an
invalid way by exceeding the bounds of an array is an example of an untrapped error.

When we have a program that does not cause untrapped errors to occur we call it
safe. Languages are called safe languages when all the parts of a program are safe.
Consequently, these safe languages are good because they leave out the problems of errors
that can cause unpredictable behaviour without being noticed. Untyped languages must
perform checks at run-time to enforce safety. Typed languages can check the programs
statically, and if a program which could be unsafe is found, it can be rejected. These
languages can also perform run-time checks to reinforce safety.

Typed Untyped
Safe OCaml,C#,Java Perl,Python,LISP

Unsafe C Assembler, BCPL, Forth

Table 2.1.: Safety and typing

This table shows some languages and their stated safety. For example, the C language
is typed but unsafe, and Perl language is untyped and safe. Most languages have more or
less programmers who like each of their properties; because they write programs without
too much work, or because they are used to them.

Summing up, type-safety is concerned with how much a programming language protects
its own abstractions. Intuitively, this means that well-typed terms should never be in
an incorrect state, where computation cannot continue. Type-safety is usually viewed
as two properties of the semantics of the programming language: progress and (type-)
preservation.

We now introduce program behaviour, which is usually related to type safety.

14

2. Type-safe Distributed Computations

2.1.3. Behaviour

There is a subset of the execution errors from section 2.1, that we will call forbidden
errors. These errors include untrapped errors, in addition to a subset of the trapped
errors. It can be said that a program has a good behaviour if it does not cause any
forbidden errors to occur. In particular, a well behaved part is safe.

���������	�����

��������

	�����

������

	�����

Figure 2.1.: Execution error sets

A language where all programs have good behaviour is called strongly checked.
Therefore, when talking about a given type system, this holds for a strongly checked
language:

• “no untrapped errors occur: this is the safety guarantee”

• “no single trapped error in the forbidden subset occurs”

• “the programmer should avoid other trapped errors”

Good behaviour can be enforced by typed languages by performing static checks at
compile time to prevent unsafe programs from running. The checking process is called
type-checking, and the algorithm that performs these checks is called type-checker. If
some program happens to pass the type-checker without errors, is said to be well typed.
If this program does not pass this stage is called ill-typed, which may stand for an
ill-behaved program. Examples of languages which are statically checked are OCaml, C#
and Java.

Untyped languages can enforce good behaviour in a different way, by checking all array
access or all divisions by zero. This checking process is known as dynamic checking.
Examples of this kind of languages are Perl, Python and LISP.

If a language happens to be statically checked, this does not imply that at run-time it
can execute all programs without minimal checking. Consider, for example, the classical
problem of array bounds, which may be not known at compile time. The problems that
arise at run-time should be checked to have a more robust language.

2.1.4. Abstraction safety

Normally, a program is decomposed into a series of modules, each of these modules is
used to represent, once identified, an abstraction of the problem. Again, types have

15

2. Type-safe Distributed Computations

a fundamental role in this procedure. To make these modules more reusable in other
conditions, the introduction of Abstract Data Types (ADTs) allows programmers to
create and export the particular functions they want. These data types are used as an
interface between an exported implementation and a real implementation. The ADTs will
also be created to preserve some properties. The defined operations on this type are the
only means of interacting with values of this particular type. Only the operations defined
inside this type have access to the information. In (JHM73), there are two important
properties that type abstraction presents:

Authentication “It is forbidden for any other except the implementation to construct
values of abstract types. This brings the possibility of having enforced invariants
that would be too difficult to maintain otherwise”.

Secrecy “Only the implementation is allowed to inspect values of abstract types. This
enforces loose coupling between the possible clients of the abstract type. If something
is changed in the implementation, but the interface to the clients remains unchanged,
there will be no need for the clients to change their code”.

If the programming language semantics and the type system guarantee that the encapsulation
provided by type abstraction can never be breached, then the language is called abstraction
safe. Note that abstraction safety is a stronger property than mere type safety (but
generally it cannot exist without the latter). On a single computer it is usually guaranteed
by the compiler. But this changes radically when we begin to transmit data over the
network. Data can be modified, lost, or attacked. Finally, if we want to have a distributed
programming language, it will be desirable to preserve abstraction safety throughout the
entire distributed system. This topic is covered in the next section.

2.2. Concepts of distributed computations

From this section on, we refer to some properties of distributed computations and how
programming languages have been adapted to support these properties in a transparent
way. We introduce some problems found in distributed systems, and ways of dealing
with those problems. These problems include global naming of types across a distributed
context, or how to pass values between different hosts in a network.

To this end, we will introduce a language called Acute, created for doing research
in distributed programming languages. We will see the main design points of it, with
special focus on some primitives. In addition to this, we will discuss security in a
distributed context: more precisely, how to maintain some properties in the context of
active adversaries in our network.

2.2.1. Type naming

In a distributed setting, names of types do not suffice for declaring type equality on
different hosts. We must deal with abstract types, and that is when problems arise. If

16

2. Type-safe Distributed Computations

we have a non-abstract module type there could be at least some comparison for equality
(name or structural equality on types (SH00; BS79)). When working with abstract types,
the representation may not be available for performing this check.

For example, in one host A we may have an abstract type called CounterA which
counts integers, and in another host B an abstract type with the same name CounterB

(we put a sub-index for doing the distinction) which is used for counting odd integers
only. Despite the bad selection of the type name (it could have been OddCounter), we
cannot rely on type names only for exchanging values of abstract types.

There are different proposals to solve this, and the more general problem of using
abstract data types in distributed contexts (BHII87; PMMR06). The solution we will
describe here was introduced by (LPS+03) and it is to use hashes as type names. By
hashing module definitions at compile time, global module type names can be created
for abstract types, even between different compilations on different hosts. This hash of
module definitions consists of the module itself, and all the dependencies the module has.
By using this technique, hashes can be literally viewed as types. They are included in the
type grammar as well. We will use Listing 2.1 as input for an intuitive description. When
a program is compiled, whenever an abstract type Seed.t is found, it will be replaced
by the hash of the definition of the module Seed. These type hashes can not be used by
a programmer: they are only an abstraction in the type grammar of the language. At
compilation time, hashes are inserted when needed. We will show examples of how this
is achieved.

In this proposal, we need to modify the standard operational semantics of a language.
Standard abstract types operational semantics substitute types and operations, as
computation goes on. For this case, we need to maintain additional information for type
preservation theorems that are added to this semantics, and to prove that static and
dynamic type equality match. We will see a construct to help preserve this additional
type information, called coloured brackets (GMZ00), in the next section.

2.2.2. Coloured brackets

By using hashes as global names, we are in fact introducing a problem we did not have
before. When compiling source code, we must take into account that we cannot substitute
types of values belonging to abstract data types with their hash representation. This
happens because we lose information to use for type-checking, and we can be exposing
concrete type representation details of this abstract type. This small example shows how
this happens:

We have a module, called Seed, which provides an abstract seed to be used as input for
cryptographic algorithms. Now we proceed to give a brief description of the compilation
process, because it is important for understanding when and how hashes are introduced.

Throughout this process we will use −→c as the symbol for indicating that a compilation
was done. This is because compilation is like a relation between source code and compiled
code, and because the process could be non-deterministic. First, the source code is
type-checked for errors. After that, in places where we have a TYPE, there will be
reductions that substitute t with corresponding hashes h.t. This process is made in

17

2. Type-safe Distributed Computations

module Seed = struct
type t
val i n i t : un i t −> t
val rand : i n t −> t
val get : t −> i n t

end ; ;

(fun s : Seed . t −> ()) (Seed . i n i t)

Listing 2.1: Example Seed module

the signature, in the structure of the module, and also in all modules referenced by it.
Furthermore, all hashes are generated in a deterministic way. This ensures that on every
machine the same code gets the same hash value h.

Having the compilation process clear, we proceed to compile the example module in
Listing 2.2.

−→c (∗ compi la t ion ∗)

(fun s :h . t −> ()) 43

where
h = hash (Seed , (module Seed=SeedSig : SeedStruct) , t)

Listing 2.2: Example Seed module, compiled

The expression obtained after traditional compilation is not typable, because h.t is an
abstract type and its implementation should be opaque outside the Seed module. This
happens because we have lost information due to compilation. With the knowledge we
have, we cannot prove that 43 of type int has type h.t as super-type.

To solve this problem we introduce the concept of coloured brackets (GMZ00). The
author’s aim was to treat terms accessed from different hosts (principals) in a different
way, based on the knowledge they have of the implementation of some abstract type.
Later, this was extended by (LPS+03) to cope with this case.

Basically, coloured brackets wrap abstract terms. This is used to separate where we
can show the internal details of abstract types and where we must show this term as
an abstract type. These terms are written [e]Tc , where T is the outside type and c the
colour. This colour is basically a single hash that tells us which type is equivalent to this
abstract type. There is an empty colour, that we denote as •.

Back in our example, in listing 2.3 we show the application of coloured brackets.
With this additional information, now [43]h.t

h can be typed with type h.t by the
type-checker. Also, inside the brackets, 43 can be associated with its natural type int
and with h.t, by using the colour h. This happens because the hash h contains all

18

2. Type-safe Distributed Computations

(fun s :h . t −> ()) [43]h.t
h

where
h = hash (Seed , (module Seed=SeedSig : SeedStruct) , t)

and
SeedStruct =

type t=in t
. . .

Listing 2.3: Colored brackets

the information for its calculation: in particular, it contains what is needed to do the
association of t to int, in the structure of the module Seed. This is a sort of revelation of
the information carried with each hash. Naturally, this behaviour must be taken into
account by the type system to prove different equalities based on the set of hashes that
can be revealed in each particular term.

In particular this should be applied whenever we have to transmit a value of an abstract
type to other hosts or processes in our network. Coloured brackets are used to carry
the information of the equivalent types that this abstract type has. We will introduce
marshalling in the next section.

2.2.3. Marshalling

The name has its roots in terminology used by the designers of Modula-3 (CDJ+89a;
CDJ+89b) (amongst others), who introduced the term marshal for shipping data to other
places in a self-contained form. We will use the following definition:

Marshalling is the process of gathering data and transforming it into a standard format.
In this way, the data can transcend network boundaries or be used from a persistent
storage in a later time. In order for a value of some type to be moved around a
network, it must be converted into a data stream that corresponds with the packet
structure of the network transfer protocol. When the data is transmitted, the
receiving computer converts the marshalled data back to its original form.

As an example, this process must be done when passing the output parameters of a
program written in one language as input to a program written in another language.

Many programming languages have support for this process. In Table 2.2 we summarise
some of these languages, where this procedure can be referred to in different ways:
“pickling”, “serialise” or “marshal”. There are some authors that make slight distinctions
between these terms, but we will use their intended meaning as if they were interchangeable.

19

2. Type-safe Distributed Computations

Language Primitive for packing Primitive for unpacking
MSH export-clixml import-clixml
PHP serialize unserialize

OCaml Marshal.to string Marshal.from string
Ruby Marshal.dump Marshal.load

Haskell Data.Binary.encode Data.Binary.decode
F# BinaryFormatter.Serialize BinaryFormatter.Deserialize

Smalltalk storeBinaryOn readBinaryFrom
Python pickle.dump pickle.load

Common Lisp (with-standard-io-syntax
(write obj stream))

(with-standard-io-syntax
(read obj stream))

Table 2.2.: Languages and representations

2.2.4. Exchanging data between hosts: to trust or not to trust

It is common for hosts to send and receive data in a network. An example is shown in
figure 2.2. There are variations in the trust that we have between hosts. A priori, it
is not the same to connect to a server in your local area network, or to connect to an
unknown host on the Internet.

There are hosts (or entities) that are malicious, and can act as adversaries preventing
us from achieving a particular goal. Specifically, active adversaries are the ones that
tamper the messages transmitted between hosts. This may be intercepting, replying or
modifying these messages.

Figure 2.2.: Transmission

Figure 2.3 shows an interception, made by host named Trudy.

Figure 2.3.: An adversary intercepting a message

20

2. Type-safe Distributed Computations

This simple example show that adversaries could modify messages in a network. We
will not show how this is achieved, because it is not within the scope of this work.

2.2.5. Type safety with active adversaries

In a distributed setting, it is more difficult to maintain type safety properties: hosts on
the network may not have the same representations for the same types, or there can
be adversaries on the network that are actively introducing errors or altering security
properties that affect type safety directly. Figure 2.4 shows an example of this problem:

Figure 2.4.: Altering message

The adversary modifies types and/or values that are travelling along the network
between two hosts so type safety can not be guaranteed anymore.

2.3. A distributed language: Acute

The Acute language is based on an ML-like core, with extensions to support distributed
development in high-level languages. The focus was on what has to be added to a
higher-order typed language, with call-by-value semantics traditional in ML languages,
to support distributed development and interaction. The language is the result of a
collaborative work between the University of Cambridge and INRIA Rocquencourt.
The topics in this research included some interesting and key properties of distributed
languages, and some results were added as features of the language. It is important
to note that the implementation of this language is a prototype, made to remain as
close as possible to the semantics of the language. The features added focus on naming
and identity in a distributed setting, and for the sake of this, includes among others
properties:

• Type-safe distributed interaction, permitting marshalling of values of any type.
This key feature will be extended on 2.3.2.1.

• Type names generated by hashing the definition of this type, or in a fresh manner,
by generating a unique id for this type. This generation can be done at compile
time, for example.

21

2. Type-safe Distributed Computations

• Expression-level names generated to be certain that name equality test suffices for
type safety of associated values.

• Thunkification of threads and mutexes to support computation mobility (migration
of threads).

• Rebinding of marshalled values to local resources where values are to be unmarshalled.
This feature allows the association of the values to local types, or to be evaluated
in a different context.

We will broaden some of these features in the next sections, emphasising on the ones that
affect type and abstraction safety directly. Next we continue with a brief description of
the syntax and semantics of the language.

2.3.1. Syntax and Semantics

The complete type grammar of the language is in Figure 2.5. There is shown the
(non-standard) principal expressions, and the form of modules. In this case, h is a module
name, hash or freshly generated, t is a field of extern type identifier, MM is a pair of
internal/external module identifiers, and MK is a constant string. Types which are
a subindex are inferred in general. Moreover, the last three type expressions are only
present in the semantics, not in source code.

T ::= int |bool | string |unit | char |void |T1 ∗ · · · ∗ Tn |T1 + · · ·+ Tn |T → T ′ |
T list |T option |T ref | exn |MM .t | t | ∀t.T | ∃t.T |T name | |T tie |
thread |mutex | cvar | thunkifymode | thunkkey | thunklet | h.t |n

e ::= . . . |marshal e1 e2 : T |unmarshal easT |
freshT| cfreshT |hash(T, e2)T ′ |hash(T, e1, e2)T ′ |nT |h.x |
namecase e1 with {t, (x1, x2)}whenx1 = e → e2 otherwise → e3|
create thread | . . . | thunkify | [e]Teqs

marshalling

naming

threads

sourcedefinition ::=
modulemode MM : Sig version vne = Str.withspec | modules
importmode MM : Sig version vce likespecby resolvespec = Mo| import
markMK marks

Figure 2.5.: Acute syntax

The Acute static type system for source programs is based on an OCaml core and a
second-class module system, with singleton kinds for expressing abstract and manifest
type fields in modules. Module initialisation can involve arbitrary computation. The
definition of compilation describes how global type- and expression-level names are
constructed, including the details of hash bodies. This is technically delicate but provides
useful clarity in a setting where abstraction boundaries may be complex, with abstract

22

2. Type-safe Distributed Computations

types shared between programs. In the implementations, all brackets can be erased.
The semantics preserves also the internal structure of hashes. This too can be erased in
implementations, and hashes and fresh names can be implemented with literal bit-strings
(e.g. 160-bit SHA1 hashes and pseudo-random numbers), but is needed to state type
preservation and progress properties. The abstraction-preserving semantics makes these
rather stronger than usual.

In the next subsection we continue extending the language features.

2.3.2. Features of Acute

Here we discuss some language features, focusing on the properties relevant for this work.
There are other properties that we do not extend here, but can be revisited in the main
technical report (SLW+04b).

2.3.2.1. Type-safe distributed interaction

For doing type-safe (un)marshalling, the language brings two primitives, marshal and
unmarshal. Below there is an example of their syntax:

e ::= ... | marshal e1 e2 : T | unmarshal e : T | ...

These expressions are used to send values along untyped communication channels.
The marshal/unmarshal primitives can be used in many ways, for example, between
cooperating programs or to perform remote computations.

The marshal primitive has two parameters: the first one, e1 is an expression of type
string used as a mark. This mark, which will be explained next, is used for dynamic
rebinding. The second parameter, e2 is an expression of type T.

2.3.2.2. Dynamic rebinding

A particular value can be sent over the network, or saved for using in a later time by using
the marshal primitives. After this procedure, different modules can be available when we
want to use this value at unmarshal time. The language introduces an interesting feature
which is that this value can be rebounded to local resources or shipped along.

This is different from other approaches that convert local resources to distributed
references for referencing this resource remotely. In that case there is more traffic
associated to each of the indirect attempts to access to this reference. This language
does not have explicit support for distributed references. Instead, that option is left to
be programmed with the basic primitives of communication.

The programmer can select which values are packed and sent over the network, and
which ones should be rebounded remotely to modules available at the other end of the
communication. This is achieved simply by putting a special primitive named mark in
the source code of our programs, that determines which module definitions are shipped
with any marshal operation, and which are rebounded to local resources (BHS+03).

23

2. Type-safe Distributed Computations

Every module in Acute is a sequence of definitions, plus marks interspaced between the
modules.

An example source code showing the usage of mark can be viewed in listing 2.4.

module M1: sig val y : i n t end = struct let y=6 end
mark ”MK”
module M2: sig val z : i n t end = struct let z=3 end
IO . send (marshal ”MK” (fun ()−> (M1. y ,M2. z))

: unit−>i n t ∗ i n t)
−−
module M1: sig val y : i n t end = struct let y=6 end
module M2: sig val z : i n t end = struct let z=4 end
((unmarshal (IO . r e c e i v e ()) as unit−>i n t ∗ i n t) () ,M2. z)

Listing 2.4: Dynamic rebinding of modules

In this example we can see two programs. In the first program, there are two modules
M1 and M2. After the definition of M1 there is a mark ”MK” which divides the part
that will be sent (M2) from the one that will be rebound remotely (M1). When the
other program is executed, there is already a definition for module M1 and for module
M2. This makes the receiver program use its module M2. The result of the execution of
the second program will be ((6, 3), 4).

This provides an additional strong feature to distributed programming. For instance, if
we are constructing a program to do routing in a network, when a value is sent to another
router, it can be rebound to the local resources, and be used in a completely different
instance of the same program (which measures distance to neighbours in a different way).

2.3.2.3. Concurrency

The work on concurrency is very mature, using mutexes and condition variables. Also,
there is a procedure for the migration of groups of threads (called thunkification) and its
associated mutexes and condition variables on these mutexes to be carried to another
host or to be saved on magnetic media for later use.

2.3.2.4. Versions

In this language, versions can be grasped as rough approximations to semantic module
specifications. Versions have a specific language within Acute. This language will be
attached to modules. Furthermore, we need some way of restricting which version we are
willing to import in a module: there is a language of version constraints. In addition to
this, it should be possible to specify chains of imports, each one with its own version.
We also need a relation that gives us what versions satisfy our import specification.

This is a feature which permits, among other things, to do partial migration of modules
in a distributed environment, by allowing to specify versions of software modules. The
code in listing 2.5 shows a simple example of a version used in a module definition. This

24

2. Type-safe Distributed Computations

permits the restriction of versions with a specification of the desired version included in
the definition of the module. This specification is named withspec.

module Show : sig val v end = ver s i on 2 .0
−−
import Show ve r s i on 2 .∗

Listing 2.5: Version example

Then it should be easy to define which version code we are willing to use in our program
by using an import statement.

2.3.3. Acute and abstraction safety

Our main motivation to use this language is because it is supposed to be type-safe in a
trusted setting.

When there are no adversaries in our system, it is explicitly detailed on (SLW+04a)
that unmarshal is not only type-safe, but also abstraction safe. This happens because of
the coloured brackets technique presented in section 2.2.2, and because type primitives
like marshal(e : T) and unmarshal(e : T ′) are closed. This means that they do not have
free module identifiers or type variables. This step aids to have a simple representation
of marshalled values as byte-strings, which can be carried over the network in an easy
way. Finally, type checking at unmarshal-time will be simple with string equality.

By using this technique we must observe that standard operational semantics for
abstract types must be changed, because it is common to forget about abstraction, by
doing substitution of types and operations.

To be more robust against active adversaries, we have to add something to prevent
the values being marshalled to be tampered with. In this case it should be mandatory
to check that the marshalled value is a well-formed representation of the type declared.
The authors propose to use ASN.1 or XML instead of strings for exchanging data and to
have a PKI infrastructure or to use PCC to secure the information sent over the wire.

Our proposal will be around a similar idea of this, but using a novel technique,
introduced in the next chapter. The objective is to have a more robust language against
active adversaries.

25

3. Proof Carrying Results

In this chapter we explain a novel technique called Proof Carrying Results. We begin
with an introduction showing its basis. We continue with its motivation, description and
formalisation. Furthermore, we add the description of a special kind of algorithms called
certifying algorithms, which are a fundamental support for this technique.

3.1. Introduction

The technique introduced here has its base on previous work made by (NL96) in proof
carrying code (PCC). In that work, Necula put formal mechanisms to solve the problem
of remote code execution in a behaviour-controlled way.

We have a scenario in which two parts exchange information (see Figure 3.1): one
consumer of code, and one producer who sends code to it. The code sent to a remote
consumer has a certificate, which is a formal safety proof, showing that this code complies
with certain specification of safety rules. The consumer must have a way of validating
this proof, with the help of a proof checker, to verify compliance of the certificate to the
safety rules.

Figure 3.1.: Proof carrying code example

There are many areas where this technique can be applied. For example, mobile code,
in the form of applets, for Internet browsers or mobile phones. Moreover, it would be
interesting to use it for updating software remotely. The code to be updated carries
evidence that proves it is safe to execute it on the local machine. Then the consumer
could certify that the code complies with some specification.

26

3. Proof Carrying Results

Figure 3.2.: A maze

A simple example that represents how this technique works can be shown using a maze.
In Figure 3.2 there is a simple maze. Can the reader tell is there is an exit to this maze,
in brief time?. Without additional information, this can be a difficult task. But if we
show a path or trace that can be followed until the maze is solved, it is easy and very fast
to determine the exit point. Figure 3.3 shows the maze solved, using a trace of square
dots. The example is known as Necula’s labyrinth, and is commonly used by Necula to
show this PCC property.

Figure 3.3.: Follow the dots to solve the maze

The trace itself can be viewed in this way: when we have a maze to solve; to try to
solve it should be more difficult than to follow the blue dots to the exit. Therefore, the
certificate that is carried along with the code in PCC should be like the dots in the maze.
In this way, the consumer only has to use this trace to verify the compliance to the safety
rules.

When checking the certificate provided, the checking process must provide a reliable
checker. For this purpose, we introduce the trusted computing base (TCB) (U.S85). The
TCB is everything in a computing system that provides a secure environment. This
includes the operating system and its provided security mechanisms, hardware, physical
locations, network hardware and software.. It is assumed that the trusted computing

27

3. Proof Carrying Results

base has been or should be tested or verified. The checker used in this process must be
contained in the TCB.

In the next section we introduce a technique called based proof carrying results, which
is based on Necula’s work on PCC.

3.2. Proof carrying results

This technique was introduced in (BP06). The authors propose that some of the concepts
introduced in PCC be reused. As in PCC, we have two parts, but the exchange of
information is applied in a different scenario. Instead of a code consumer, we have a
results consumer: some host consumes a remote function, and the host that makes the
computation sends its results with additional information that allows the consumer to
validate this result.

The approach is that a consumer host sends an untrusted part some computation to
be done remotely. The untrusted part then returns the result of this computation, with a
certificate that the computation has been done in a correct way.

Certificates provide additional data to check the correctness of computations. They
can contain witnesses, which are generated in the process of computing, and proofs, that
state properties about the result. These witnesses are like a trace of the computation
made, and are closely related to the final result returned. This trace is similar to the one
in the previous maze example. Proofs, which can be part of the additional data carried,
can be there to establish properties about the result itself, or about the witnesses.

Figure 3.4, introduces a basic interaction between hosts. There, some host sends a
value a to an untrusted part. It asks for the computation of a function f with the value
sent.

Figure 3.4.: Basic PCR approach

Afterwards, the untrusted part obtains b as the result of applying the function f to a.
Then b is returned to the initial host. The question now is: how can this host be sure
that b is effectively the result of applying function f to a?.

This technique tries to answer that question by using a verification approach, as in
PCC. It also shares some important properties with PCC, which are resumed here (from
(BP06)):

Based on verification instead of trust. Indeed, PCR focuses on mathematical properties
of the result rather than on its origins. In particular, it does not require the existence

28

3. Proof Carrying Results

of a global trust infrastructure (although as for PCC it can be used in combination
with cryptographic based trust infrastructures).

Resource-aware Indeed, PCR technology advocates for succinct certificates that can be
checked efficiently and aims at avoiding performing costly computations.

Transparent While PCR uses certifying algorithms, which may be difficult to program or
consuming to run, it requires code consumers only to check certificates, which is
fully automatic, and not to build these certificates.

General, flexible and configurable Formal frameworks for certificates, are very expressive,
and lend themselves to verification, thus it is in principle applicable to a wide range
of algorithms. Furthermore, it is possible to specialise certificates and certificate
checkers for each particular algorithm.

Figure 3.5 describes a more complex example of a PCR interaction. This begins when host
A wants to obtain a prime number from host U1, sending a seed for doing calculations.
Suppose that U1 returns, along with number p, a vector ~w of witnesses which can be
used to verify that p is effectively a prime number.

Figure 3.5.: Complex PCR

Suppose that this vector contains a number of integers, which also have the property of
being primes. Then host A can use the additional vector ~w as aid to do this verification.
An extra step is added here: host A asks another host T (in this case a trusted one)
for the conditions to verify the desired property, since T knows how to prove whether a
number is prime. This information can be in the same host A, but in this example it was
taken from a remote source. This T gives A the way to obtain a proof of primality of p
. With this information, host A begins to ask other hosts about proofs (these are the
computations) of these properties. In this way there is a distribution of the proof that p
is prime.

29

3. Proof Carrying Results

Formalisation

We have a function f and we want to delegate its computation, using a as argument:

• f(a) is delegated to an untrusted party, f ∈ A → B, a ∈ A

• b ∈ B is the expected value

To verify that this value is the value we sent to compute, we must have some function
check:

checkf ∈ A×B → bool | ∀(a, b) ∈ A×B, checkf (a, b) = true ⇒ b = f(a)

In general, PCR allows the untrusted part to provide additional data H intended to ease the
checking process. Thus, one may have a checker function checkR ∈ A×B×H → bool such
that checkR(a, b, h) ⇒ R(a, b). In this way, the functional specification f is generalised
to an input-output specification R.

This technique challenges the traditional algorithms, because more information could
be needed from them, not only their result. In the next section we introduce a new kind
of algorithm that is the foundation of this approach.

3.3. Certifying algorithms

The term was introduced in (KMMS03), and a more general approach was given in
(MEK+05). An algorithm or program is certifying when, along with the result it was
supposed to give, it returns a certificate or proof that this result is indeed the correct for
the given input. This is a pragmatic approach to program correctness. In general, the
caller of a function f has no means of knowing if the result obtained from the invocation
of this function f with a as a parameter is b. This program has to believe in this result.
Certifying algorithms produce not only the desired result a, but also additional output.
This additional output is called a witness or a certificate for this computation, and is
denoted w.

Figure 3.6.: Certified function

Figure 3.6 shows the difference between a traditional function f and its certified
counterpart.

30

3. Proof Carrying Results

Concepts

Certifying algorithms have not been formally defined yet. Their definition is beyond
the scope of this work. Thus, the concepts used here are notions rather than actual
definitions. We will be using a function f : A → B, and start with the notion of a witness
predicate W for f . We call a ternary predicate W (x, y, w) witness predicate for f if the
following conditions hold:

1. w deserves the name witness, e.g., if W (x, y, w) holds then y = f(x) and if y = f(x)
then there is a w with W (x, y, w) .

∀x, y, w ∃W (x, y, w) iff (y = f(x)) (3.1)

2. Given x, y, and w, it is trivial to decide whether W (x, y, w) holds. The authors list
a number of possible formalisations for this sentence; we will choose “There is a
simple logical system, in which we can decide whether W (x, y, w) holds”.

3. The witness property is easily verified, e.g., the implications 3.2 and 3.3 have
elementary proofs.

∀x, y, w W (x, y, w) → (y = f(x)) (3.2)

(y 6= f(x)) → @ w | W (x, y, w)) (3.3)

Next, we outline the notion of a certifying algorithm for a function f . “We call Q a
certifying program for f if there is a witness predicate W for f such that for all inputs x,
Q computes a triple (x, y, w) with W (x, y, w)”. Note that this implies y = f(x).

There are important points to consider. Here, we will only introduce them. Proofs can
be found in (MEK+05):

• “Monte Carlo Algorithms resist Certification.”

• “Every deterministic program has a certifying counterpart (with only a constant
overhead in running time). “

Now we summarise some examples of algorithms that check their work.

3.4. Result certification examples

There are a number of examples in the literature, here we present only some of them. It
is not our aim to be exhaustive. This list tries to include examples of different types of
problems that can have certified counterparts. The algorithms in these examples can be
used for result certification.

31

3. Proof Carrying Results

Extended GCD

The extended GCD (Greatest Common Denominator) algorithm is an example of a basic
checker. In plain GCD we do not have a simple checker, but this extension allows us to
have an efficient one, which is not difficult to compute.

GCD(x, y) = d where d | x ∧ d | y ∧ (∀d, d | x ∧ d | y ⇒ d | d) (3.4)

In equations 3.4 and 3.5 symbol | means divides. The extended GCD algorithm further
computes u and v such that d = ux + vy.

ExtendedGCD(x, y) = (u, v, d) where d |x ∧ d | y ∧ d = ux + vy (3.5)

Such u and v constitute the certificate; in this case, the certificate always exists and
implies the minimality of d, i.e., it guarantees that the quantified part of the specification
is true. One may notice that it is simple to obtain d once u and v have been provided.
This shows that in a result certification framework, the hint or certificate may become
more important than the actual result. A plain result provided by an untrusted party has
no value, whereas a certificate does.

Prime numbers

There are a number of algorithms to test if a given number is prime (see (Ber04)). This
is known as primality test. The Pocklington criteria (Poc16) is one of these algorithms
used to verify if a number is prime. This criteria is defined in this way:

Pocklington’s criteria. Given a natural number n > 1, a witness a, and some pairs
(p1, α1), . . . , (pk, αk), it is sufficient for n to be prime that the following conditions
hold:

p1...pk are prime numbers (3.6)

(pα1
1 ... pαk

k) | (n− 1) (3.7)

an−1 = 1(mod n) (3.8)

∀i ∈ {1, ..., k} gcd(a
n−1
pi − 1, n) = 1 (3.9)

pα1
1 ...pαk

k >
√

n (3.10)

In equation 3.7, symbol | means that all numbers must be divisible by n − 1, in
equation 3.8 mod is the modulo operation, and in equation 3.9 gcd is the greatest common
denominator. There are slight variations on what the requirements for Pocklington’s
criteria are, but we will use this for convenience. The numbers a, p1, α1, . . . , qk, αk

constitute a Pocklington certificate.
From the point of view of PCR, there are two simple but central observations to make:

32

3. Proof Carrying Results

• given n, it requires much more computation power to determine the numbers of
the Pocklington certificate, than to check that these numbers verify the conditions
3.7-3.10 above;

• checking primality of a natural number n with certificate p1, α1 . . . , pk, αk and a
can be reduced to

– conditions 3.7-3.10 can be checked by purely numerical computations. Verification
of condition 3.9, may make further use of the PCR infrastructure by requiring
an extended GCD certificate to be provided.

– verification of condition 3.6 can be done recursively. Note, however, that
Pocklington’s criteria cannot prove that 2 is prime, so that another form of
certificate is required for 2 (there can be no certificate at all, since 2 is trivially
prime).

There are other kinds of algorithms which can be used for primality testing: in the case
of elliptic curve cryptography, there are some algorithms that suggest that they can be
used with this purpose; in the field of combinatorics there are such algorithms as well.
In these cases, certificates seem to be difficult to build or check. In (Ber04) the author
details certificate construction and checking for many algorithms.

These algorithms of primality checking are interesting in the context of securing
distributed computations: we could have devices which cannot compute a large prime
number by themselves; instead they could run a simple remote procedure call, and a
simple check before that to certify primality.

SAT

SAT is a decision problem, known as the satisfiability problem. The satisfiability problem
consists of a logical propositional formula in n variables and the requirement to find a
value (trueor false) for each variable that makes the formula true. One important thing
about this satisfiability problem is that it is NP-complete.

It is of central importance in various areas of computer science, including theoretical
computer science, algorithmics, artificial intelligence, hardware design, electronic design
automation, and verification.

These problems can also be used as input for a PCR algorithm.

Graph problems

There are algorithms that are meant to be used with graphs that can be used as certifying
algorithms. An example is planarity testing in graphs. A graph is called planar if it can
be drawn in the plane without edge crossings (see Figure 3.7).

33

3. Proof Carrying Results

Figure 3.7.: Planar graph

A planarity tester takes a graph G and returns true if G is planar and returns false if
G is non-planar. For any graph that is declared planar, a proof must be given in the form
of a combinatorial embedding. When a graph is not declared planar, a proof could be a
Kuratowski sub-graph. It was shown in (Kur30) that every non-planar graph contains a
subdivision of either K5, the complete graph on five nodes, or K3,3, the complete bipartite
graph with three nodes on either side (see Figure 3.8).

Figure 3.8.: K5 and K3,3 graphs

In this case, the witness of planarity is a planar drawing. This option has some
disadvantages:

• there is no linear time algorithm to produce planar drawings of planar graphs

• it is non-trivial to check whether a drawing is actually planar

A less obvious form of witness is a combinatorial planar embedding of a graph. This is a
cyclic ordering of the edges incident to any vertex on a graph G. In addition to this, a
combinatorial embedding of a graph G is called planar if there is a planar drawing of G
in which the clockwise ordering of the edges incident to any vertex agrees with the cyclic
ordering specified in the combinatorial embedding. Euler observed that there is a simple
algorithm for checking whether a combinatorial embedding is planar; and there are linear
time algorithms for computing planar embeddings (i.e (BM99)).

In the context of Proof Carrying Results, these examples show some of the algorithms
that could be used. Along with the process of constructing algorithm checkers, there

34

3. Proof Carrying Results

is a recurrent problem: was the checker constructed to correctly check this particular
algorithm? This is covered in the next section.

3.5. Correct checkers

Now we proceed to briefly discuss how the process of checking values, obtained by means
of applying some certifying algorithm, affects the overall trust on the system. If we
happen to have an incorrect checker for correct provided witnesses, the situation remains
the same: we cannot trust the result obtained, as if we had no witnesses at all added to
our result. This needs to be addressed if we want to have a robust PCR checking process.
The checker must be in the trusted computing base.

Therefore, the process of checking witnesses is dependent on how these witnesses are
checked. There are different approaches to this subject: one is to construct a checker for
each case; another one is to rely on external checkers.

The problem of using a self made checker is recursive: who can tell us if this checker
is correctly checking your algorithm, or even if it was well constructed at all? You can
construct a simple checker, and verify that it is well designed if your language has a
correct formal specification. This is not the case for many languages, however.

When using an external checker (e.g. any proof checker), it should be a proved one for
it to be reliable. The problem with this is that propositional formulas must be expressed
in a foreign language to your application.

Are there checkers for every algorithm? It is difficult to conceive a lot of algorithms
having a certified counterpart. We should take into account that a certified algorithm
uses intermediate steps in the computation as a trace to certify correctness. To work
towards the goal of having checkers for every algorithm, we must have some structure to
save these intermediate steps in the process of obtaining the final result. This structure
will be used as the certificate to be checked. It should remain as compact as possible,
because otherwise it would use too many resources when being transmitted over the
network or when kept in memory.

The next section is dedicated to the introduction of an infrastructure which enables
the use of PCR in any application or system.

3.6. Towards a PCR infrastructure

To use PCR effectively, it should be integrated within a system or application. This
could be implemented as a library to be included in applications to generate certified
results; it is simple to add a library into programs. In this context, an infrastructure
must be configured to incorporate the usage of this technique at some point. This way
we will have certified programs.

Within the infrastructure two entities can be distinguished: an oracle and a checker,
which play complementary roles in the checking process. The former takes an input and
generates a certificate for that input. The latter receives the same input, the certificate
produced by the oracle, and verifies if the certificate is valid for that input.

35

3. Proof Carrying Results

There are at least two different approaches to add the necessary infrastructure to a
system:

1. independent oracles and checkers. Whenever the checker reaches a point where a
certificate is needed, it calls the oracle with the correspondent input. The oracle
then returns the certificate, and the checker proceeds.

2. coordinated oracles and checkers. They both receive the same input, and compute
using this input until the end of the program. They should either not modify the
state of this input, or modify it in the same way, so they can keep working with
the same values.

Each of these approaches has advantages and disadvantages. In 1) oracles may be
distributed along a number of hosts, which is a positive attribute. As a drawback, this
can lead to higher latency times in the calculation of the certificates. This happens
because values cannot be reused or precomputed between two distinct oracles. In 2) one
advantage is that values can be precomputed to be used by subsequent oracles. But as a
drawback, the oracle may need more code to keep synchronisation with the checker.

If we want to use PCR for our work, it is important that we define the way in which
we would use a PCR infrastructure.

Furthermore, there are certain points that need to be addressed to create a PCR
infrastructure. Even though some were mentioned before, here is a summary:

1. give emphasis to additional hints even if they imply more computation by the
untrusted party.

2. provide a formal notion of certificates applicable in a wide range of domains.

3. describe communication channel between user and untrusted party such as remote
procedure call.

4. formally verify result checkers for stronger correctness guarantees.

We will deal with some of these problems in the next chapter, where we will include this
technique in the Acute language. Using a PCR infrastructure will give us a new level of
safety against active adversaries.

36

4. A PCR Infrastructure for ADT values in
Acute

The present chapter introduces a general infrastructure for doing PCR. One particular
instance of this infrastructure will be used to guarantee robustness of abstract types in
the Acute language.

We begin showing that PCR can be used to broaden the cases where communicating
values of abstract types could otherwise fail. We continue introducing a protocol for
PCR distributed computations, and a proposal of an infrastructure model. Moreover, we
present an implementation for the Acute language of this proposal. Finally, there is a
description of the implementation details.

4.1. Abstraction-safety and PCR

This section introduces the problem of abstraction-safety in the context of the Acute
language. We will mention why this happens using the primitives for distributed
computation marshal/unmarshal, showing the problem with a simple example. In
addition to this, we define a protocol for distributed computations that use the PCR
technique.

4.1.1. Motivation

Like many languages, Acute is vulnerable to active adversaries when transmitting abstract
values using the marshal primitive. We have many contexts where we can declare that
the language is abstraction-safe: the simplest context could be to work in the same
runtime. But when active adversaries can tamper with data, this safety can no longer be
assured. This problem is put forward in the following example.

We will use names Alice, Bob and Trudy, and Trent as our example hosts. Alice and
Bob will be the ones that are exchanging information, Trudy will represent an active
adversary, and Trent will be a trusted part (if needed). For transmitting values between
hosts Acute provides a marshal primitive,

marshal e1 e2:T

Its parameters were explained in 2.3.2.1. The expression e2 is the one which is actually
sent, we will refer to it simply as e. This interaction is shown in Figure 4.1.

37

4. A PCR Infrastructure for ADT values

Figure 4.1.: Marshal example

Trudy (the active adversary), could modify the information exchanged between Alice
and Bob in different ways. Figure 4.2 shows an example, where Trudy alters values sent
from Alice to Bob.

Figure 4.2.: An active adversary

In this work, we have a special interest in values of abstract types. These values have
invariants that are protected by the operations of the particular module (or type) they
belong to (CW85; Hoa69). These invariants can be broken if the value is modified. For
that reason, if Trudy modifies values from the expression e : T , invariants of type T
can be explicitly broken. This would make the language abstraction-unsafe (as seen in
Chapter 2) .

To make the system more robust regarding this issue, we propose the use of PCR
(Chapter 3) for our solution. To use this technique, we must define an infrastructure for
its usage: this PCR infrastructure is defined in Section 4.2.

Before proceeding with the introduction of the infrastructure, we present a protocol
which describes PCR distributed computations.

4.1.2. A Protocol for PCR distributed computations

The protocol that we present here is the way that hosts interact with each other, and how
they obtain and verify witnesses. Consumers in general will be represented by host Alice
and producers by host Bob. There could be a third host, Trent, that would act as a
trusted host for verifying witnesses. The function used by the consumers will be denoted
φ, and used with a parameter a, e.g. φ(a). This function φ should have a certification
algorithm for it, that returns a result b, and a witness that certifies the computation.
Witnesses, which will be denoted −→w , are a vector of values, with some type.

38

4. A PCR Infrastructure for ADT values

Alice

if ok

not okerror

BobTrent

Figure 4.3.: Protocol

The protocol begins when Alice asks Bob some computation φ(a). Bob will return b to
Alice, along with a vector −→w , which certifies that b = φ(a). Alice can then verify, using
~w, that b = φ(a). This process can be done only if Alice knows how to do it. Trent,
being the trusted part, comes into scene if Alice needs further help to do this.

4.2. A PCR Infrastructure

In this section we present a generic infrastructure for doing Proof Carrying Results. To
this aim, we begin introducing primitives that describe flows in distributed computations.
We show how the infrastructure is implemented in the Acute language, for certified
result communication. Furthermore, it will be used for verifying the witnesses of the
computations. We end this section with the implementation in the Acute language of the
protocol previously described (in subsection 4.1.2).

4.2.1. Primitives for distributed computation

The primitives introduced here are operations, or a sequence of operations, that describe
different ways of obtaining a certified result. Each primitive will then be shown as an
interaction flow between entities.

In this case, these entities will be 3 hosts interacting with each other, which are called
Alice, Bob and Trent.

The first flow is from Bob to Alice. Bob sends Alice a value v of type T . In this case,
Alice did not directly ask for this value. There is no guarantee that Alice may ever
receive or process the value sent by Bob. Thereafter, we could say that this value has
been pushed from Bob to Alice.

Figure 4.4.: First flow

The second flow is from Alice to Bob. Now Alice asks Bob for some value of type T .
Then Bob returns that value of type T .

39

4. A PCR Infrastructure for ADT values

Figure 4.5.: Second flow

The last flow happens between Alice and Trent. Alice has a value v and asks Trent
for a proof that v is of type T . If Trent can construct such proof ~x, it returns −→x to
Alice. When some exception happens, for example, if no proof can be found at all, an
error is returned.

Figure 4.6.: Asking for a proof

These primitives can be combined to increase the types and complexity of flows in the
system. We will be interested in the particular flows (or sub-flows) that include proofs
of the value sent along the wire. In the next subsection we show how these primitives,
combined, are used as a PCR infrastructure model.

4.2.2. Infrastructure model

Using the primitives and flows previously described, we will model an infrastructure for
performing result certification. The infrastructure is modelled by the interaction of the 3
hosts shown in Figure 4.7.

40

4. A PCR Infrastructure for ADT values

Figure 4.7.: Infrastructure model

A simplification of this infrastructure is that Alice ≡ Trent. The full infrastructure
considers all the flows and primitives presented. In our implementation, we will focus on
the primitive v : T, ~w.

4.3. Implementing the infrastructure in Acute

Now that we have introduced a general infrastructure for using in distributed computations,
we show how it is applied to the Acute language.

4.3.1. Certified result communication in Acute

We extend the way that we use the marshal primitive by adding a witness, obtaining a
new syntax for it

marshal e1 e2:T witness

which may now include the information that can be used by the receiver to check an
invariant. The use of witnesses for certification is optional: if there are no witnesses the
primitive will behave as the old one. In the case that certificates are required by the
receiver, the sender cannot choose: the value must be sent with a witness or it will not
be used by the receiver, and an exception will be raised.

41

4. A PCR Infrastructure for ADT values

Figure 4.8.: Adversary can not modify values only

The semantic of the primitive is changed accordingly from:

mv ::= marshalled(En, Es, s, definitions, e, T)

to the new semantic

mv ::= marshalled(En, Es, s, definitions, e, c, T)

Here e is the core value being shipped, T its type, c its witness, s a store, Es a store
typing, definitions is a sequence of module definitions, and En is a name environment.
The En and Es would not be shipped in an production implementation, but are needed
to state type preservation and for runtime typechecking of reachable states. They are
shipped in the Acute implementation only if literal hashes are not being used.

With this extension, our system is more robust against active adversaries. It is important
to note that the adversary could modify the value and recalculate the witnesses for this
new value. This case does not directly affect the problem we are trying to solve. This
happens because, even when the original value has been modified, it complies with the
invariants the new value must have. The witnesses will be used to check this compliance,
and all we should care about is that the witnesses are well generated to certify the value.
A trivial example is that we ask a remote host for a prime number, and the remote host
sends us some number. In the middle of this transaction, an adversary changes this
number. As long as the new number is also prime and it is sent with a proof, things will
keep working and abstraction safety is kept.

Verifying witnesses

To complete the process of result certification, the receiver must perform some actions
when receiving the value. We suggest the use of the received witness to check that the
invariant holds for the value received. Adding up, the primitive for unmarshal

unmarshal e:T’

will be changed to reflect the new extension. The new primitive

42

4. A PCR Infrastructure for ADT values

unmarshal e:T’ witness

will support the use of witnesses. In the unmarshal process we will check that the
invariant holds for the module by using that witness. Therefore, our main contribution
is to add functionality to Acute that allow us to send values of an abstract type along
with a certificate that proves that the value complies with the type invariant. Enforcing
the check of witnesses must be supported, because for some types we want to receive
certified values for continuing our computation. The unmarshal, as in the marshal case,
alters its semantics in a similar fashion to include the witness.

Before going on with the implementation details, we show the model used for our
solution.

4.3.2. Acute instantiation of the protocol

This section will give semantics to each part of the infrastructure model flows described
previously. We can distinguish four main primitives:

? : T v : T v : T? ~x|error

There is an interaction happening between a sender and a receiver, generated by each
primitive. We are going to explain, intuitively, what each primitive represents.

The first one, ? : T , represents Alice asking Bob for a value of type T . This could
generate a response from Bob with value v : T , which is in fact the next primitive. The
meaning of the second primitive is that Bob is pushing some value v : T to Alice, even if
she did not ask for it.

The notion of checking can be associated to primitive v : T?. This represents Alice
asking a trusted party (Trent) to certify whether the value v is of type T . The primitive
~x|error represents the response to a previous check for a value, and Trent can return to
Alice a vector ~x or an error if he could not verify this value or any other error occurred.

These primitives can be combined to obtain any of the flows described before. As an
example, we show how to implement the model seen in Figure 4.6 in Acute on listing 4.1.
This example is for two hosts: Alice, whose code is on the left, and Trent on the right.

IO . send (marshal ”StdLib ” v :T)
. . .
. . .
. . .
. . .
let r = unmarshal (IO . r e c e i v e ()) :T) w

. . .
let v = unmarshal (IO . r e c e i v e ()) :T) in
let w = cons w i tne s s v ”a lgor i thm ” in
IO . send (marshal ”StdLib ” v :T w)
. . .
. . .

Listing 4.1: Model example

Note that there is an implicit sequence defined. Only after Trent receives the value
will he begin processing. The type used for representing the response vector ~x or an error
error is:

43

4. A PCR Infrastructure for ADT values

type witnes s = c e r t i f i c a t e | e r r o r

and c e r t i f i c a t e = (a s s e r t i o n ∗ proo f) l i s t

With these definitions, we can easily code any of the flows defined. In this work we
will only consider the v : T, ~w flow, and implement it as new primitive in Acute.

The next section is dedicated to explaining the inclusion of this extension in the Acute
language.

4.4. Extension of the Acute language

Based on the protocol and infrastructure model, this section shows how the primitive
introduced in 4.1 was added to the Acute language. The two main changes that had to
be made were, on one hand, the use of a certificate in the marshal primitive and, on
the other hand, the verification of that certificate on the receiver side, in the unmarshal
primitive. Both primitives needed alterations to support this new syntax and semantics.
Next is a summary of the changes made to the language, then we show how these changes
were made, and finally how the language connects with the Oracle.

4.4.1. Overview

To identify the precise locations for the changes, it was important to know the language
source code files modules and structure. It is usual for languages to have an abstract
syntax tree (AST) for representing the language syntax. For recognising that particular
syntax, we have the parser. Closely related is the lexer, which defines tokens from source
code strings. Therefore, the first files to be reviewed were the ones that contained the
lexer, parser and the AST codification. Also, they were the ones to include the first
modifications.

In the case of the abstract syntax tree, the main addition to the internal structures of
the language was the support for certificates. There are some places where the values
assigned to certificates had to be instantiated onto the language internals. The first place
was in the user code, where a certificate is defined. The fragment of code that deals with
user code can be viewed in Listing 4.2.

When a user introduces a certificate to be marshalled, e.g.

let foo = IO.send (marshal 17:Prime ”bar...”)in ...

the structures defined there are filled with the values (in the example “bar...”) to be
used before.

The second place where certificates were introduced is in the definition of marshalled_body.
This structure is shown in Listing 4.3, and contains all the information that will be used
in the marshalling process: its content will be marshalled, and later on unmarshalled and
used by the receiver.

44

4. A PCR Infrastructure for ADT values

. . .
(∗ PCR add i t i on s ∗)

and a s s e r t i o n i t em =
| Asse r t i on of s t r i n g
| Assert ionExpr of prim expr

and proo f i t em =
| Proof of s t r i n g
| ProofExpr of prim expr
| NotProved

(∗ A c e r t i f i c a t e i s a l i s t o f a s s e r t i o n s and proo f s ∗)
and c e r t i f i c a t e = (a s s e r t i o n i t em ∗ proo f i t em) l i s t
. . .

Listing 4.2: Fragment of ast.ml file: definition of certificate

Support in the lexer was simple and straightforward: we only needed to recognise some
tokens, mainly certificate.

In the parser, the additions were focused on filling the structures of the AST. It is
important to note that there were two different parsers which needed modifications: one
was the Acute language parser, and the other was the marshalled expression parser,
whose modification was important for our purposes. The marshalled expression parser
fills the information into the marshalled_body structure (in Listing 4.3), when receiving
a marshalled value.

The medular change in the semantics of the two mentioned primitives was made in
the evaluator. The evaluator is the process which takes a compiled code, and executes
the program step-by-step. In particular, the operations related to marshal/unmarshal
had to be modified to cope with the new semantic of the operations. In the marshal
operation we added the certificate to the marshalled body to be sent over the wire. In
the case of the unmarshal operation, there was more work to do by the receiver. This
is why more code was needed on the evaluator, to “glue” the Acute language with our
Oracle for checking certificates.

With the modifications introduced, this operation uses the marshalled_body structure,
which contains the value and the certificate to be checked, and is filled accordingly by
the parser when received. The evaluator then sends these values to the Oracle to do the
verification. If it receives an exception as a response from the Oracle, this exception will
be propagated. If the verification is indeed successful, the program continues executing
as before. In next subsection we show these modifications in depth, showing portions of
code of each of the mentioned parts.

45

4. A PCR Infrastructure for ADT values

. . .
(∗ Marshal led data ∗)
type marshal led body = { mb ne : nameenv opt ion ;

mb defs : d e f i n i t i o n s ;
mb store : s t o r e ;
mb storeenv : l o c t y p l i s t ;
mb expr : expr ;
mb typ : typ ;
mb cert : c e r t i f i c a t e ; }

(∗ the f o l l ow i n g w i l l be the r e s u l t o f u n s e r i a l i s i n g a
message s t r i n g ; by contras t , we use Marsha l led foo
as a subexpre s s i on o f the expre s s i on language ∗)

and marsha l l ed va lue = Marsha l l ed va lue of marshal led body
. . .

Listing 4.3: Fragment of ast.ml file: additions for marshalling

4.4.2. In depht modifications

In the previous subsection we showed an overview of the changes made to the abstract
syntax tree and its related files: it is a good starting point, because the structures defined
there are used extensively along the language implementation. Here we extend that
overview, also showing the changes in other parts of the language in depth.

The lexer was extended by adding the word certificate to the recognised words of the
language. Listing 4.4 contains the modified part of the lexer.

...
/* For receiving the token from the lexer */
%token CERTIFICATE
...
let lc_keyword_table =

create_hashtable 149 [
"amodule", AMODULE;
"and", AND;
"as", AS;
"assert", ASSERT;
"begin", BEGIN;
"by", BY;
"certificate", CERTIFICATE; (* added certificate keyword *)
"cimport", CIMPORT;
"cmodule", CMODULE;

...

Listing 4.4: Fragment of lexer.mllp file

46

4. A PCR Infrastructure for ADT values

This had to be introduced for recognising this token, to be sent to the parser.
The parser has more complex stuff to do. It will recognise the new marshal expression,

when we have the certificate added, and instantiate the parts of the abstract syntax tree
with the needed information.

...
/* This is the certificate in source code */
/* Certificate marshalled is different , and is
* under these definitions */

/* A certificate is a list of assertions and proofs */

certificate:
/* empty */ { fun ps ->

Printf.printf "No certificate found\n"; [] }
| certificate_list_non_empty { fun ps ->

Printf.printf "Certificate found , filling list\n";
($1 ps) }

;
certificate_list_non_empty:

certificate_item { fun ps ->
Printf.printf "New item on certificate list\n";
[$1 ps] }

| certificate_list_non_empty COMMA certificate_item
{ fun ps -> $3 ps :: $1 ps }

;
certificate_item:

| LPAREN assertion_subexpr COMMA proof_subexpr RPAREN
{ fun ps -> new_certificate_item ($2 ps) ($4 ps) }

;

assertion_subexpr:
| STRING { fun ps ->

assertion_item_of_string($1) }
| simple_expr { fun ps ->

assertion_item_of_expr(exprtoprim($1 ps)) }
;

proof_subexpr:
| STRING { fun ps ->

proof_item_of_string($1) }
| simple_expr { fun ps ->

proof_item_of_expr(exprtoprim($1 ps)) }
;
...

Listing 4.5: Fragment of parser.mlyp file: certificate definition in user source code

The main parser file is called parser.mlyp, and we show three fundamental parts here.
The first is in Listing 4.5, and shows the definitions for parsing the certificate in user

47

4. A PCR Infrastructure for ADT values

source code. The second part is the expression for recognising certificates, also in user
source code. It is added to the new marshal primitive, as shown in Listing 4.6.

...
simple_expr:
...
| MARSHAL simple_expr simple_expr certificate

{ let l = symbol_rloc yy_envp in fun ps ->
mkexp (LocMarshal($2 ps, $3 ps, $4 ps,

newtypvar ps)) l }
#ifdef compiled
| MARSHALZ STRING simple_expr certificate

{ let l = symbol_rloc yy_envp in fun ps ->
mkexp (LocMarshalz($2, $3 ps, $4 ps,

newtypvar ps)) l }
#endif
| UNMARSHAL simple_expr certificate COLON certificate_type

{ let l = symbol_rloc yy_envp in fun ps ->
mkexp (LocUnmarshal($2 ps, $3 ps, $5 ps,

newtypvar ps)) l }
;
...

Listing 4.6: Fragment of parser.mlyp file: certificate addition to (un)marshal in user
source code

The third part was added for parsing the extended marshal expression when unmarshalling.
This expression can contain a certificate to be used at unmarshal time. This is shown in
Listing 4.7.

...
marshalled_certificate:

/* empty certificate , default case */
UNDERSCORE { fun ps -> [] }

| CERTIFICATE LBRACKET certificate_list_non_empty RBRACKET
{ fun ps -> Printf.printf "Marshalled certificate found\n";

($3 ps) }
;

/* function for processing certificates */
marshalled_value_pri:
MARSHALLED LPAREN marshalled_body RPAREN
{ fun ps ->

let newps = new_parser_state ps.pm
(Some (ps.econst_ident_of_string ,ps.econst_string_of_ident))

in
only_in marshalled_mode newps "marshalled not allowed"
(Marshalled_value ($3 newps)) }

;
...

48

4. A PCR Infrastructure for ADT values

Listing 4.7: Fragment of parser.mlyp file: at unmarshal, we must recognise certificates

For all this new semantics to be taken into account, the language evaluator was modified.
This evaluator is coded mainly in the eval.ml file. It contains the actions to be executed
for all the language primitives. In particular, the marshal and unmarshal primitives and
code associated can be viewed there.

We begin describing the changes in the marshal primitive. In this case we needed to
include the corresponding certificate, presented by the user, to be marshalled to a string.
This was achieved by adding the certificate (Ast.certificate) to the parameters of the
marshal function, and to add it to the marshalled body structure (see line 14 in Listing
4.8).

1 . . .
2 l et marshal
3 : Ast . sma l l s t ep ou t e r −> s t r i n g −> Ast . prim expr −>
4 Ast . c e r t i f i c a t e −> Ast . typ −> Ast . prim expr
5 = fun c on f i g mk expr c e r t ty −>
6 . . .
7 l et cer t ’ = c e r t in
8 l et marshal led body = { mb ne = en ’ ;
9 mb defs = defs ’ ’ ;

10 mb store = store ’ ’ ;
11 mb storeenv = storeenv ’ ;
12 mb expr = (primtoexpr expr) ;
13 mb typ = ty ;
14 mb cert = c e r t ;
15 }
16 in
17 l et s = pr in t mar sha l l ed va lu e (ps empty marshal ())
18 (Marsha l l ed va lue (marshal led body))
19 in
20 Debug . pr int ’ Opts . DBC marshal
21 (fun () −> (”marsha l l ing to : ” ˆ s)) ;
22

23 . . .

Listing 4.8: Fragment of eval.ml file: filling the structure to be sent

There are many functions used all along the code for printing strings at the standard
output, and pretty printing the language source code files. They are used, for example,
to generate the compiled code, which is like an abstraction of the user source code. Of
course, we needed to modify many of them, and also introduce new printing primitives
to support our extensions. The additions made to these functions were a consequence of
the changes made to other functions. For completeness, they are mentioned here.

The connection to our PCR infrastructure is made at unmarshal time. The unmarshal
function can be viewed in Listing 4.9, which contains this connection.

1 . . .

49

4. A PCR Infrastructure for ADT values

2 l et unmarshal : . . .
3 . . .
4 (∗ here we shou ld c a l l our orac le , to check i f c e r t i f i c a t e
5 matches wi th the expec ted one ∗)
6 l et matches =
7 (match mb. mb cert with
8 | [] −> true
9 | −> (∗ Firs t , check the i n va r i an t o f each type ∗)

10 i f (inv typecheck wi th marsha l l ed type mb cty) then
11 Oracle . check mb. mb expr mb. mb cert
12 else
13 r a i s e (C e r t i f i c a t e c h e c k f a i l u r e ”C e r t i f i c a t e type
14 does not match inva r i an t type o f marshal led value ”)
15)
16 in
17 i f (matches = fa l se) then
18 r a i s e (C e r t i f i c a t e c h e c k f a i l u r e ”C e r t i f i c a t e sent does
19 not c e r t i f y marshal led value ”)
20 else
21 Debug . pr int ’ Opts . DBC marshal
22 (fun () −> (”Oracle returned : ” ˆ s t r i n g o f b o o l matches)) ;
23

24 . . .

Listing 4.9: Fragment of eval.ml file: calling our oracle at unmarshal time

In Acute, this connection is represented by a “simple” call to the check function of the
Oracle module (in line 11). This module is where all the corresponding verifications are
made. The process of unmarshalling could now return a new exception when invoked,
as a side effect of checking the certificate. If the certificate sent does not match the
marshalled value, an exception is raised (see Line 19).

The module that describes the connection with the Oracle is an important contribution
made by our work, presented in the next subsection.

4.4.3. Certificate checking

For the process of checking the certificate we decided to use the COQ proof assistant.
Even thought COQ has many impressive functionalities, in this case it is used only
as a proof checker for the received certificate. To interact with COQ, the user has a
command-line interface. This is because it is commonly used interactively. We have
that a simple proof contains definitions, declarations, and the actual proof. This proof
is surrounded by the “Proof” and “Qed” words. At first sight, we did not have the
prerequisites of interaction, we just needed to have certain proof approved or not. This
is why we first began searching for an interface which could be easily programmable for
accessing COQ’s own functions. Then, providing it with the corresponding information
on these definitions, thesis and hypothesis, we intended to use the proof checker as a
library. Unfortunately, we could not find a suitable interface for this purpose.

50

4. A PCR Infrastructure for ADT values

Following the advice of Benjamin Gregoire (Everest Team at Sophie-Antipolis), we
focused on another solution. The value and its certificate, along with other pre-defined
constants and COQ commands, were written into a file. After that, we call the COQ
compiler passing this file to be compiled. This was easy to implement, and we could
obtain basic results with it: the compiler returned a value 0 if the proof was successful or
6= 0 if it wasn’t. This solution requires forking a new process, the COQ compiler. Figure
4.9 shows the architecture of the connection with COQ.

Figure 4.9.: Architecture of the connection with COQ

When writing the file to be sent to COQ we had to take several things into account.
First of all, a valid proof had to be constructed with the assertions and proofs that were
present in our certificate, including the received value. In the end, this procedure resulted
in a concatenation of strings in the file, ordered by some criteria. Following the Figure
4.10 we provide a description of the process.

Figure 4.10.: Full proof sequence

51

4. A PCR Infrastructure for ADT values

In this Figure there are three different parts represented:

• the Acute runtime, responsible of executing Acute source code,

• the Acute (FreshML) internal execution, and

• COQ.

We describe the process using eight steps. Bob generates some value v with a witness
C of that computation, and sends this value to Alice using the marshal primitive. In
step (1), there is sample code that Bob uses to create the corresponding value v, and its
certificate. Next (2), the Acute internal runtime adds the certificate to the value to be
marshalled. After that (3), the marshal is transmitted over some network medium (e.g.
TCP/IP). Alice, at (4), expects this value after invoking the unmarshal primitive. After
the low-level network transport has delivered the message, the Acute internal runtime
uses the values received to construct a valid proof sequence to be sent to COQ. This
is represented in step (5). Here, a new Unix process forks and the COQ compiler is
executed with the specified parameters, the value and its certificate (step (6)). After this
fork, the system waits until a response is generated by COQ. When we have a successful
compilation of the proof sequence, COQ ends returning a value of 0 (no error), as usual in
Unix systems. If any kind of error occurs, the COQ process will returns a value different
from 0, and some string output is shown at the standard output of the process (step
(7)). We catch this string output, and return it to the Acute runtime, to be used by the
language Acute if needed, for example, to raise an exception. This is shown in step (8).

We must take into account that many proof assistants have reserved words for achieving
different behaviours. COQ has its own reserved words that could affect the checking
process: a consequence of a deliberate misuse could be incorrect input validated as
if it was correct. An easy example is the use of COQ reserved words like Axiom or
Parameter. Consequently, these words must be banned from proofs sent by clients.

Therefore, there is an extra check which leaves out these reserved words, to increase
security. Finally, the COQ prelude must be empty for all proofs: this forces the presence
of proofs for every step by clients.

52

5. Case Study: Using PCR for certified
prime computation

This section introduces an example which shows the consolidation of the new functionality
in the Acute language. We begin by setting a scenario for this example, and continue
with a simple test case. In addition to this, we explore an extension of the protocol
defined before for doing distributed calculation of witnesses and also certificate checking.

5.1. Scenario

Alice wants to start a secure communication with some host, which acts as a server. At
some point in this process, she will need one large prime number to use as a seed for
some cryptographic algorithm. Alice does not have computational resources to do this
computation by herself. Thus, she will outsource this computation to Bob.

Figure 5.1.: Alice and Bob

Bob is an untrusted host for Alice, but with lots of resources to compute this number.
Knowing this, Alice requests Bob a prime number. Bob generates this number, along
with a proof that it is prime. When this number is returned to Alice, she will use the
proof to check that the number is prime. If this checking succeeds, she can start the
secure communication with the server.

Figure 5.2.: Alice and Server

53

5. Case Study: Certified Prime Computation

All hosts will communicate using the marshal / unmarshal primitives for the
transmission of values with each other. This marshal primitive can be used with a witness.
At unmarshal time that witness will be checked. This check happens automatically, and
is made in a transparent way. In this process, the Acute language will try to verify all
properties and values that come in the witness.

This can be done in two different ways:

• using only the information received. In this case the proof must be complete, with
all needed sub-proofs. The COQ example for this case is when we have no prelude
at all.

• relying on some pre-shared information. For example, there could be a trusted
common base of algorithms and proofs. This base will be referred to in some way by
the sender. An example TCB table could be 5.1. When a host needs to prove some
property, it will look up its table to find out how to check that property. In the
case that the property to check is not on the table, the request cannot be fulfilled,
and an exception will be returned.

Property name COQ Theorem COQ Code
Prime Pocklington ...
Even EvenProp ...
Odd OddProp ...
GCD GCDProp ...

OrderedLists SortedProp ...

Table 5.1.: TCB Properties and proofs

In any case, the needed properties must have a proof to be used by the COQ proof
assistant. In the next subsection we instantiate this simple scenario into a simple test
case, in which we make the proof of concept of our proposal.

5.2. Pocklington certificates

There are different ways to certify that one particular number is prime (Ber04). Pocklington’s
theorem(Poc16), shown in 3.4 provides a sufficient condition for primality of natural
numbers. We show a resume of it here to help the reader.

Theorem 5.1. Given a natural numbers n > 1 and a witness a and some pairs
(p1, α1), . . . , (pk, αk), it is sufficient for n to be prime that the following conditions hold:

p1...pk are prime numbers (5.1)

(pα1
1 ... pαk

k) | (n− 1) (5.2)

54

5. Case Study: Certified Prime Computation

an−1 = 1(mod n) (5.3)

∀i ∈ {1, ..., k} gcd(a
n−1
pi − 1, n) = 1 (5.4)

pα1
1 ...pαk

k >
√

n (5.5)

We highlight these two points from the previous definition:

• Given n, it is required much more computational power to determine numbers for
a, p1, α1, . . . , pk,αk than to check that these numbers verify the conditions 5.2-5.5.
Therefore, we can say that a, p1, α1, . . . , pk,αk form a Pocklington Certificate.

• For a natural number n, provided we are given p1, α1 . . . , pk, αk and a, checking
primality of n is made by numerical computations for conditions 5.2-5.5, and
condition 5.1 can be done recursively.

In (GTW06), there is a proposal for using pocklington certificates for certifying prime
numbers. We used some of the results obtained in that work (e.g. the pocklington
executable) in the course of constructing this test case.

5.3. Simple test case

After setting the scenario, we will present a test case in detail. We will be using a number
of Acute modules, the COQ proof assistant and a marshalled value to be tested. The
following Acute modules will be used for this example:

• Generator: used by module prime for generating a new prime number using an
known algorithm.

• Prime: this module will have the code to work with prime numbers.

Alice will be using the prime Module for receiving a prime number.

(∗ Prime module ∗)
i n c l ude sou r c e ”prime . ac ”

(∗ Al ice j u s t r e c e i v e a prime number ∗)
l et p = (unmarshal (IO . r e c e i v e ()) : Prime . t)

in
Pervas ive s . p r i n t e nd l i n e ”Prime number i s : ” ;
Prime . pr in t pr ime p ;
Pervas ive s . p r i n t new l i n e () ; ;

Listing 5.1: Alice’s code

55

5. Case Study: Certified Prime Computation

In this listing, Alice receives a marshalled prime number, and prints it at the standard
output.

(∗ Prime module ∗)
i n c l ude sou r c e ”prime . ac ”

(∗ Generate a prime number to be sen t to A l i ce ∗)
l et p = Prime . generate (Prime . i n i t) in
<<<<<<< . mine
IO . send (marshal ”StdLib ” p (”prime ” ,
”apply (Po ck l i n g t on r e f l
(Po ck c e r t i f 1234567891 2 ((3607 , 1) : : (2 , 1) : : n i l) 12426)
((P r o o f c e r t i f 3607 prime3607) : :
(P r o o f c e r t i f 2 prime2) : :
n i l)) .

=======
IO . send (marshal ”StdLib ” p

(”prime ” , ”apply (Po ck l i n g t on r e f l
(Po ck c e r t i f 1234567891 2
((3607 , 1) : : (2 , 1) : : n i l) 12426)
((P r o o f c e r t i f 3607 prime3607) : :
(P r o o f c e r t i f 2 prime2) : :

n i l)) .
>>>>>>> . r41

exact no check (r e f l e q u a l true) .
”)) ; ;

Listing 5.2: Bob’s code

Bob generates a new prime, using some seed, and then sends this prime with a certificate
for it.

In the process of generating certificates we will be using a tool called pocklington
from the CoqPrime project (INR). For example, for generating the certificate for number
1234567891, the command pocklington 1234567891 generates the COQ code in Listing
5.3.

Requ i r e Import Pock l ing tonRe f l .

Set Vir tua l Machine .
Open Loca l Scope p o s i t i v e s c o p e .

Lemma prime1234567891 : prime 1234567891.
Proof .

app l y (Poc k l i n g t o n r e f l
(Poc k c e r t i f 1234567891 2 ((3607 , 1) : : (2 , 1) : : n i l) 12426)
((Pr o o f c e r t i f 3607 prime3607) : :

56

5. Case Study: Certified Prime Computation

(Pr o o f c e r t i f 2 prime2) : : n i l)) .
exac t no check (r e f l e q u a l t rue) .

Qed .

Listing 5.3: Coq Program

With this helper program, we can easily generate a certificate for any prime number
generated by Bob. This test case simplifies the scenario, and just sends a prime number
from Bob to Alice.

When we execute both programs, the prime number is marshalled and sent by Bob,
and received and unmarshalled by Alice. The Acute language, at the moment of receiving
the certificate, uses the checker to certify this prime number using the algorithm defined
in its table. The implementation adds two important files, which must be part of the
TCB. This files are to be used by the proof assistant:

• A TCB prelude is for defining which prelude to add to a proof (if any), and

• A TCB list is used for defining the list of local directories to be included (-I) for
compiling the proofs.

In this case, we rely on code provided by the COQ prime project to prove the number is
prime using the certificate received. The result of the execution of Alice code is in listing
5.4.

: : : : : : : : +++Desugar source d e f i n i t i o n : :
: : : : : : : : +++Compile source d e f i n i t i o n : :
: : : : : : : : +++Va l u a b i l i t i e s der ived : : :
: : : : : : : : +++Done source d e f i n i t i o n : :
: : : : : : : : ++Done source f i l e : :
: : : : : : : : ++Scope−r e s o l v e source d e f i n i t i o n : :
: : : : : : : : ++In f e r source d e f i n i t i o n : :
: : : : : : : : ++Desugar source d e f i n i t i o n : :
: : : : : : : : ++Compile source d e f i n i t i o n : :
: : : : : : : : ++Va l u a b i l i t i e s der ived : : :
: : : : : : : : ++Done source d e f i n i t i o n : :
: : : : : : : : +Done source f i l e : :
: : : : : : : : +Scope−r e s o l v e exp r e s s i on : :
: : : : : : : : +I n f e r exp r e s s i on : :
: : : : : : : : +Desugar expr e s s i on : :
: : : : : : : : +Compile exp r e s s i on : :
: : : : : : : : +St r i p l o c a t i o n in fo rmat ion : :
: : : : : : : : +Done expr e s s i on : :
: : : : : : : : Done source f i l e : :
: : : : : : : : Run : :
: : : : : : : : Executing program : :
Type to check f o r in c e r t i f i c a t e found
No c e r t i f i c a t e found
Marshal led c e r t i f i c a t e found
New item on c e r t i f i c a t e l i s t
F in i shed wr i t i ng f i l e with proo f s .
/tmp/ cer t d8a3a3 . v

57

5. Case Study: Certified Prime Computation

/ usr /bin / coqc −I /home/ f z i p i / sour ce s / coqprime/ Tact ic
−I /home/ f z i p i / sour ce s / coqprime/N
−I /home/ f z i p i / sour ce s / coqprime/Z
−I /home/ f z i p i / sour ce s / coqprime/ Pr imal i tyTest
−I /home/ f z i p i / sour ce s / coqprime/ L i s t
−I /home/ f z i p i / sour ce s / coqprime/ e l l i p t i c
−I /home/ f z i p i / sour ce s / coqprime/num
−I /home/ f z i p i / sour ce s / coqprime/num/W/W8
−I /home/ f z i p i / sour ce s / coqprime/examples
−I /home/ f z i p i / sour ce s / coqprime /tmp/ cer t d8a3a3 . v

COQ sa id : (no e r r o r)
Prime number i s :
1234567891
Thread ex i t ed c l e an l y :
n0 : [RUNNABLE] ; ; ()
: : : : : : : : Done : :
Success :
, Es :{} , s :{} , threads :{} , (RUNNABLE: , SLOWCALL:) , MX:{} , CV:{}

Listing 5.4: Result of execution

This achieves our primary goal: now the Acute language is more abstraction-safe
than before. In the next sections we will extend our proposal, distributing the work of
generating witnesses for a computation among multiple hosts.

5.4. Towards a distributed certifying infrastructure

Extending the proposal presented in Chapter 4, we can try to distribute the task of
generating witnesses. This can be achieved by using a protocol for doing verification (or
calculation) of witnesses in a distributed fashion. Using this approach will lead us to a
way of checking more computation intensive properties, by sending the witness to hosts
which could have better (or more specialised) hardware than us. This will be described
in detail in the next sections.

It is important to note that we do not want to solve the problem of automatic generation
of proof conditions. Many experienced research groups are working on this subject, which
is still an open problem. Solving this problem exceeds the limits of this work. We base
this extension in that proofs could be divided into smaller sub-proofs, and the process of
verification can behave independently in each of these sub-proofs.

5.5. Extending the protocol

The protocol in 4.1.2 must be extended to include this case. Now we have to consider
additional hosts, and each additional host will aid us to check some witness.

58

5. Case Study: Certified Prime Computation

Alice BobT1T2T3

Figure 5.3.: Extension of the protocol

In the previous protocol, Bob returned a vector ~w to Alice. Suppose that we have an
example of such vector in equation 5.6. In this vector there will be some values that
Alice can verify; and there will be other values that may need further verification steps.
This is shown in equation 5.7.

−→w = (w1, w2, . . . , wn) (5.6)

We call the properties that have been proved pi, and the properties that remain to be
proved φi. For each proven property pi there will be a vector ~w1 that will be the witness
of this proof. Thus, we have that

∀i

w1 proved ⇒ Prop(p1, w1)
φ2 not proven

.

wj proved ⇒ Prop(pj , wj)
.

φn not proven

(5.7)

The rest of the necessary verifications to prove that property Prop holds can be done
in a distributed way. If a host can check some properties directly, we call those properties
local properties. There will be properties that we cannot check by ourselves, which must
be forwarded to some other host (Trent, in our example) that knows how to verify their
values; these will be called remote properties. Accordingly, we obtain that

p1 ∧ φ2 ∧ · · · ∧ pj ∧ · · · ∧ φn → Prop(b, φ(a)) (5.8)

When we are checking all the properties that must be verified, some of them will
be local and others remote. But we must verify all properties to prove that the main
property Prop holds. A similar example to the one that we introduced before with prime
numbers can be used to describe the new behaviour of the distributed generation of
witnesses.

Another task that could be distributed is the generation of proof conditions. For
example, we could ask a third party to give us the properties that must be proved, instead
of having these properties in every host.

In the next section, we will show how the protocol is applied to the calculation of a
prime number, to see how it works.

59

5. Case Study: Certified Prime Computation

5.6. Protocol example with prime numbers

In this instance, our function φ will be GeneratePrime (with or without parameters,
it does not matter right now). We will call our result n instead of b, and the vector
containing the witnesses ~w.

At some point of the execution of a program, Alice needs a prime number. She knows
(by configuration, or by other means) that Bob can give her that number by calling the
GetPrime primitive. Alice then sends a message GeneratePrime to Bob. Bob will then
return n to Alice, along with a witness ~w that n is a prime number. There could be an
exception here: if Bob cannot construct the prime number in the way that Alice asked,
or if another error appeared in the calculation of n and its witnesses vector ~w. This part
is similar to the protocol introduced previously, and now comes the additional part that
distributes computations.

Alice will ask Trent for witnesses of prime value n. We will use the Pocklington
certificates (5.2) in this example.

If Trent can find a Pocklington certificate −→w of n, it is returned to Alice. This
certificate will be a list of integers, with this form:

−→w = (p1, α1, p2, α2, . . . , pk, αk, a) (5.9)

This list will be used to verify that Pocklington’s criteria holds, so we must check that:

p1...pk are prime numbers (5.10)

(pα1
1 ... pαk

k) | (n− 1) (5.11)

an−1 = 1(mod n) (5.12)

∀i ∈ {1, ..., k} gcd(a
n−1
pi − 1, n) = 1 (5.13)

pα1
1 ...pαk

k >
√

n (5.14)

As we have already seen, these values will be passed to a proof checker like COQ which
has the same set of equations/properties. We will need additional properties to be proved
for this criteria. In particular, we will name the property of a number n being a prime
and verifiable with Pocklington’s criteria as PocklingtonProp n. There are more properties
that complete this criteria, namely ModuloProp, DivideProp, GCDProp, GreaterThanProp.
We now summarise the properties that must be proved in order to certify our prime:

• PrimeProp pi wi, which is true if pi is prime

• DivideProp pα1
1 ... pαk

k n, which is true if (pα1
1 , ..., pαk

k) | (n− 1)

• ModuloProp an−1 1 n, which is true if an−1 = 1(mod n)

60

5. Case Study: Certified Prime Computation

• GCDProp a pi p k, which is true if gcd(a
n−1
pi − 1, n) = 1

• GreaterThanProp pα1
1 ... pαk

k sqrt n, which is true if ∀i ∈ {1, ..., k} pαi
i >

√
n

Other common properties, that will help us are:

• SQRTProp sqrt n, which is true if sqrt n =
√

n

• ExpProp pα β, which is true if pα = β

• etc.

After adding these properties, the next proposition must hold

∀i, IsPrimeProp pi wi ∧
DivideProp pα1

1 ... pαn
n n ∧

ModuloProp an−1 1 n ∧
∀i,GCDProp a pi n k ∧

GreaterThanProp pα1
1 ... pαk

k sqrt n → IsPrimeProp n

Here, IsPrimeProp represents the property of a number being prime. This way we can
achieve distribution of the generation of certificates for prime numbers. For each wi to
be tested for primality, we just send it to another node for constructing a certificate for
it, or just return an error if the number can not be certified as prime.

In the next chapter we present the conclusions reached by this work.

61

6. Conclusions, related and further work

This chapter is devoted to the conclusions obtained developed in this thesis. We also
present related work done in other languages, or different approaches to this subject.
Finally, we suggest future work to be carried out in this area.

6.1. Conclusions

We have defined and implemented an infrastructure for result certification. This
infrastructure can be used in other places where there is a need for using the proof
carrying results technique and not only in this particular case. It is independent from
the language, and also, with little or no effort, from the proof assistant used.

There is a successful implementation, for the Acute language, of a solution for
the detected problem. This solution uses the infrastructure defined here, and its
implementation is available for further testing (Zip08). In order to achieve this, we
used the technique of proof carrying results, where values transmitted to other hosts carry
a witness that proves the computation has been done in a correct way. For the process
of verifying that the witness certifies these transmitted values, we used the COQ proof
assistant. The proofs are made over these values of abstract types and their properties,
carried in a certificate.

As we successfully added this technique to an arbitrary language, it should not be
difficult to extend the framework to any other programming language which suffers from
similar problems. This means that if we can run a COQ proof assistant, and either 1) we
have access to the source code of the programming, or 2) the programming language has
an API for interfacing in a similar way with the system; then it should be a reasonable
amount of work to add this mechanism to the language/system.

Working with a proof assistant is a good way of delegating the checking process. It
is important to use a well-designed, well proven tool for doing this step. Luckily, the
knowledge on the COQ system by the members of our research group was very helpful to
bypass some of the drawbacks that we had when establishing the connection with the
Acute language.

Proof Carrying Results is a promising new approach. The progress on this subject
is directly bound to the progress on Certifying Algorithms. This happens because it is
difficult to find an algorithm that works for a general case. Despite this consideration,
there are many applications of this technique in a number of places, given that we do not
trust other hosts. In particular, in global grids where we could have many distributed
computations, this technique can obtain good results. Finally, we have made a proof of
concept that implementations can be carried to extend systems in a successful way. The

62

6. Conclusions, related and further work

source code of the Acute language with support for PCR can be found in (Zip08). There
are many improvements that can be made that complement the work done up to now,
and these are presented in the next section.

6.2. Future work

There are a number of lines that can be followed starting from this point. Throughout
this work we have opened many possible interesting lines of research. We will try to
summarise them here:

• The work on certifying algorithms is a promising way for algorithm designers.
Thinking about new applications for certifying algorithms in other contexts is
interesting since it might allow us to add them to the list of possible ways to reach
a solution.

• Proof Carrying Results can be implemented in other distributed languages, with
the same problems that we introduced in Acute. The most natural is HashCaml,
because its features were adapted from the ones that are problematic (for our
purposes) in Acute, like global hashes for marshalling. Microsoft’s F# could be an
interesting domain of application as well. If we have few resources for performing
computations (e.g. Java cards, cellular phones, etc.) it is an ideal place to be used.
This is because computations can be performed in a server with lots of computing
resources, and just checked by the client application, given a clear API for doing
result certification.

• For the COQ proof assistant, it could be interesting to have a Proof service: this
should be a server, that listens in a TCP/IP port and forwards the terms and
lemmas received to an executing COQ process. In return, it should send proof
obligations to clients, or a “Qed” if nothing remains to be proved. For maximum
portability, the exchange can be made in XML language. COQ already has a DTD
defined for the purpose of reading and writing XML files (dt08b). The exported
files are an XML encoding of the lambda-terms used by the Coq system. The
implementation details of the Coq system are hidden as much as possible, so that
the XML DTD is a straightforward encoding of the Calculus of (Co)Inductive
Constructions.

• Distributed generation of certificates, as we mentioned before, is an open field of
research by many groups. It is related to the automatic generation of verification
conditions. There are many things that must be accomplished to use distribution.
Some of them are related to formal steps that must be covered by any solution
introduced: for example, termination must not be altered by this distribution. The
idea is to bind this generation to more complex questions.

• Only do the certificate check if the type of the received value is abstract. This
feature was not implemented this time, because it could break soundness equations.

63

6. Conclusions, related and further work

To have this feature available, the equations must be analysed carefully so as not
to break type soundness.

6.3. Related Work

There are three basic types of work related to ours. First, there is work that use similar
techniques to connect to the proof checkers. Second, there are distributed languages
with properties similar to the ones in the language we worked with, Acute, that try to
solve similar kinds of problems. But almost none of the ML-like languages that have
type-safe marshalling deal with dynamic type equality across programmes in the presence
of abstract types. Third, there is work on other techniques, which are probabilistic
instead of being a verification technique like the one presented in this work.

Proof assistant connection

Yves Bertot and Laurent Thery introduced guidelines for building generic user interfaces
for theorem provers (BT98). CtCOQ (Gro99), provided a first graphical working
environment for the COQ proof system, based on these guidelines. The PCoq tool
(Gro) continued the work done in CtCOQ, and extended it with a Java user interface.
After that project, the approach was inherited and used by the COQIde interface (GTK+).

ProofGeneral (Asp) for Emacs also followed the work done in CtCOQ. It communicates
with the theorem prover by using the Emacs’s facilities for shell interaction, and has
some common functionality with the other projects mentioned. Besides this interaction,
none of these projects used the proof assistant as a library because they were oriented
towards simplifying the interactive proof process.

The future plans of ProofGeneral include the PGIP, which is the Proof General
Interaction Protocol, a message passing protocol for communicating proof components,
primarily with interactive theorem provers and their interfaces (Asp07). This protocol
has an architecture that includes a Broker, Proof Assistants, and some kind of display
interface: a Web browser, text interface, etc. See Figure 6.1 for details.

64

6. Conclusions, related and further work

Figure 6.1.: PGIP Architecture

In addition to this, Cezary Kaliszyk implemented a Web front-end for accessing various
proof assistant engines, by using the technique of writing to a file and parsing strings
(KvRWH07).

Successful work on the use of the internal structure of the COQ proof assistant was done
in the MOEBIUS project by the MOEBIUS team. The team worked on a Verification
Conditions Generator (VCGEN) for Java (GS07). This project needed to access the
COQ engine, and they needed to access its internal structures.

Programming languages

We will not be exhaustive with programming languages that support typed distributed
communications.

Previous work on ML-like distributed languages began with JoCaml (Fou98): a
language for Distributed Concurrent and Mobile support. The implementation was
recently relaunched to make it more compatible with OCaml (Fes07). For concurrent
programming, JoCaml implemented the join calculus primitives into Caml. The language
has limitations in its actual implementation, basically in message marshalling. Code
mobility has not been implemented yet, which means that we cannot send a function
over a communication channel. Communications between producers and consumers are
made by using a name service which registers services, and is used to search for available
functions.

The Alice (Kor01) distributed programming language is closer in many aspects to
the work in Acute. It evolved from a research language to a full language, it has been
continuously improved, and it is very stable. This is why it has become a complex piece of
software, with the introduction of many features: futures, higher order modules, packages,
pickling, components, distribution and constraints. Furthermore, it includes a rich system
of applications for producing software: a virtual machine, compiler, interpreter and linker,
data inspector, connection with SQL databases and XML documents. Pickling is the
term used for type-safe marshalling in Alice. When working with abstract types, they

65

6. Conclusions, related and further work

are all dynamically generated. In order to establish a shared abstract type across the
distributed system, it can be pre-evaluated and the results distributed.

HashCaml is the last example of functional languages. It is an extension of the OCaml
byte-code compiler, with support for type and abstraction-safe marshalling. In order to
connect different hosts we use the marshal primitive. This extension uses the research
done in Acute, and the idea is to be an unobtrusive modification to the OCaml core. The
work on global runtime type names is also extended, by including more key OCaml type
constructs like user-defined variant and record types, substructures, functors, separate
compilation and external C functions. It is mentioned in (BSSS06) that the language
protects itself only against accidental errors, not adversaries of any kind.

In the context of object oriented languages, Java (AG96) boosted the distributed
programming paradigm, permitting the execution on lots of hosts by using its virtual
machine as a basis. Primitives for doing distributed computations included the notion
of marshalling (serialisation). This facility included version identifiers with the class
definitions of serialised objects, as we can see in the Remote Method Invocation facility
(WRW96). The main problem for Java programs is that classes are only identified by
their (syntactic) name and class loader. This introduces problems when trying to use
two classes with the same name but different methods.

The experimental language X10 (SSvP07) may be viewed as generic Java, without
concurrency, arrays or built-in types; with the addition of places, clocks, activities and
distributed multi-dimensional arrays. Conceptually, places are “virtual shared-memory
multi-processors”. This language was conceived for doing high-end, high-performance,
high-productivity computing. An X10 program acts on data objects, using lightweight
threads called activities. It has a unified global access space, which means that objects
can be referenced by activities in any place. Programmes written in X10 are guaranteed
to be statically type, memory and pointer-safe. No work can be identified to preserve
these safety properties in the presence of active adversaries.

There is a project called Distributed Java (OAY05), to add type-safe higher-order code
mobility to Java. The project mixes the functional and object-oriented paradigms by
adding functions to the Java programming language as first-class citizens. The language
integrates fype-safe higher-order functions for Java, full integration with Java RMI, and
allows fine-grained control of class loading in distributed applications. It is based on
the Polyglot Extensible Compiler Framework (Mye). The project mentions that the
integrity of resources can be checked dinamically when code arrives (e.g. an invariant),
by adding constraints in a particular primitive (RC-Defrost). But there is no specific
mention to security as a global concern, or how type-safety is assured in the presence of
active adversaries.

For the Microsoft .NET framework, we have languages that rely on the virtual machine
that are functional or object oriented. An example of a functional language for .NET is
F# (Res07). This language is like a porting of OCaml for the .NET framework, with
some additions. F# was developed as a pragmatically-oriented variant of ML that shares
a core language with OCaml. Unlike many type-inferred, statically-typed languages
it also supports many dynamic language techniques, such as property discovery and
reflection where needed. F# includes extensions for working across languages and for

66

6. Conclusions, related and further work

object-oriented programming, and it works seamlessly with other .NET programming
languages and tools.

Related techniques for securing distributed computations

In this document we used one technique for verification of distributed computations to
make them more secure. There are other techniques that introduce the utilisation of
probabilistic methodology for detecting possible alterations (or cheating) in the context of
grid computations. The work by Wenliang Du et. al (DJMM04) on grid computing and
on distributed computations by Phillipe Golle and Ilya Mironov (GM01) are examples
of these other techniques. The main approaches are different, and even when they have
very low probabilistic numbers of not being caught cheating with the results, they are not
one hundred percent reliable. This is, of course, dependent on what kind of adversaries
you have, and the threat analysis you made for your system. Following the strategy
of checking the results of computations, Grid result checking (GRMR05) focuses on
statistical checking. There, the authors define a process that:

1. ensures that a set of results is indeed correct (with high probability)

2. does not unduly eliminate results which are actually correct (false positives)

3. keeps the test low-cost

The first point is for users, as they need the result to be correct. The second point is for
the Grid system, because it is important not to waste CPU cycles in the global grid. The
main technique used is sequential analysis (GS91), which is widely used in statistical
analysis. The third point is rather obvious, but it is mentioned for completeness.

67

Bibliography

[AG96] Ken Arnold and James Gosling. The Java Programming Language. Addison
Wesley, 1996. ISBN 0-201-63455-4.

[And82] Gregory R. Andrews. Distributed programming languages. In ACM 82:
Proceedings of the ACM ’82 conference, pages 113–117, New York, NY,
USA, 1982. ACM. ISBN 0-89791-085-0. doi:10.1145/800174.809772.

[Asp] David Aspinall. Proof general. Available from: http://proofgeneral.inf.
ed.ac.uk/ [cited 2008.09.05].

[Asp07] David Aspinall. Proof general interaction protocol, 2007. Available from:
http://proofgeneral.inf.ed.ac.uk/wiki/PG/PGIP [cited 2008.09.05].

[Ber04] Daniel J. Bernstein. Distinguishing prime numbers from composite numbers:
the state of the art in 2004, 12 2004. Aimed at Math. Comp. Available
from: http://cr.yp.to/primetests/prime2004-20041223.pdf [cited
2008.04.29].

[BHII87] Farokh Bastani, Wael Hilal, S. Sitharama Iyengar, and S. Sitharama Iyengar.
Efficient abstract data type components for distributed and parallel systems.
Computer, 20(10):33–44, 1987. doi:10.1109/MC.1987.1663386.

[BHS+03] Gavin M. Bierman, Michael W. Hicks, Peter Sewell, Gareth Stoyle, and
Keith Wansbrough. Dynamic rebinding for marshalling and update, with
destruct-time lambda. In Colin Runciman and Olin Shivers, editors, ICFP,
pages 99–110. ACM, 2003. ISBN 1-58113-756-7. doi:10.1145/944705.
944715.

[BM99] John M. Boyer and Wendy J. Myrvold. Stop minding your p’s and q’s: A
simplified O (n) planar embedding algorithm. In SODA, pages 140–146,
1999. doi:10.1145/314500.314545.

[BP06] Gilles Barthe and Fernando Pastawsky. Notes on proof carrying results.
INRIA Sophia-Antipolis Technical Report, 2006.

[BS79] Daniel M. Berry and Richard L. Schwartz. Type equivalence in strongly
typed languages: one more look. SIGPLAN Not., 14(9):35–41, 1979. doi:
10.1145/988113.988117.

68

http://dx.doi.org/10.1145/800174.809772
http://proofgeneral.inf.ed.ac.uk/
http://proofgeneral.inf.ed.ac.uk/
http://proofgeneral.inf.ed.ac.uk/wiki/PG/PGIP
http://cr.yp.to/primetests/prime2004-20041223.pdf
http://dx.doi.org/10.1109/MC.1987.1663386
http://dx.doi.org/10.1145/944705.944715
http://dx.doi.org/10.1145/944705.944715
http://dx.doi.org/10.1145/314500.314545
http://dx.doi.org/10.1145/988113.988117
http://dx.doi.org/10.1145/988113.988117

Bibliography

[BSSS06] John Billings, Peter Sewell, Mark Shinwell, and Rok Strnǐsa. Type-safe
distributed programming for ocaml. In ML ’06: Proceedings of the 2006
workshop on ML, pages 20–31, New York, NY, USA, 2006. ACM. ISBN
1-59593-483-9. doi:10.1145/1159876.1159881.

[BT98] Yves Bertot and Laurent Thery. A generic approach to building
user interfaces for theorem provers. Journal of Symbolic Computation,
25(2):161–194, 1998. Available from: http://citeseer.ist.psu.edu/
bertot98generic.html.

[Car96] Luca Cardelli. Type systems. In Allen B. Tucker, editor, Handbook of
Computer Science and Engineering. CRC Press, 1996.

[CDJ+89a] L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The
modula 3 type system. In POPL ’89: Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 202–212, New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2.
doi:10.1145/75277.75295.

[CDJ+89b] Luca Cardelli, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson.
Modula-3 report (revised). Technical Report 52, DEC SRC, November 1989.

[CW85] Luca Cardelli and Peter Wegner. On understanding types,
data abstraction, and polymorphism. ACM Computing Surveys,
17(4):471–522, 1985. Available from: http://citeseer.ist.psu.edu/
cardelli85understanding.html.

[DJMM04] Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan.
Uncheatable grid computing. In 24th International Conference on
Distributed Computing Systems (24th ICDCS’2004), pages 4–11, Tokyo,
Japan, March 2004. IEEE Computer Society.

[dt08a] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2008. Version 8.1pl3. Available from: http://coq.inria.
fr [cited 2008.10.01].

[dt08b] The Coq development team. Exporting coq theories to xml, 2008.
Version 8.1pl3. Available from: http://coq.inria.fr/V8.1pl3/refman/
Reference-Manual016.html#toc88 [cited 2008.10.01].

[Fes07] Fabrice Le Fessant. Jocaml: a language for concurrent distributed and
mobile programming, 2007. Available from: http://jocaml.inria.fr/
[cited 2008.09.05].

[Fou98] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile
Programming. Ph.D. thesis, Ecole Polytechnique, 1998. Available
from: http://research.microsoft.com/copyright/accept.asp?path=
/users/fournet/papers/dissertation.pdf.

69

http://dx.doi.org/10.1145/1159876.1159881
http://citeseer.ist.psu.edu/bertot98generic.html
http://citeseer.ist.psu.edu/bertot98generic.html
http://dx.doi.org/10.1145/75277.75295
http://citeseer.ist.psu.edu/cardelli85understanding.html
http://citeseer.ist.psu.edu/cardelli85understanding.html
http://coq.inria.fr
http://coq.inria.fr
http://coq.inria.fr/V8.1pl3/refman/Reference-Manual016.html#toc88
http://coq.inria.fr/V8.1pl3/refman/Reference-Manual016.html#toc88
http://jocaml.inria.fr/
http://research.microsoft.com/copyright/accept.asp?path=/users/fournet/papers/dissertation.pdf
http://research.microsoft.com/copyright/accept.asp?path=/users/fournet/papers/dissertation.pdf

Bibliography

[GM01] Philippe Golle and Ilya Mironov. Uncheatable distributed computations.
In David Naccache, editor, CT-RSA, volume 2020 of Lecture Notes in
Computer Science, pages 425–440. Springer, 2001. ISBN 3-540-41898-9.
Available from: http://link.springer.de/link/service/series/0558/
bibs/2020/20200425.htm [cited 2008.02.20].

[GMZ00] Dan Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type
abstraction. ACM Trans. Program. Lang. Syst., 22(6):1037–1080, 2000.
doi:10.1145/371880.371887.

[GRMR05] Cécile Germain-Renaud and Dephine Monnier-Ragaigne. Grid result
checking. In CF ’05: Proceedings of the 2nd conference on Computing
frontiers, pages 87–96, New York, NY, USA, 2005. ACM Press. ISBN
1-59593-019-1. doi:10.1145/1062261.1062280.

[Gro] Lemme Group. Pcoq: a graphical user-interface for Coq. Available from:
http://www-sop.inria.fr/lemme/pcoq/.

[Gro99] Lemme Group. Ctcoq: an environment for mathematical reasoning.
SIGSAM Bull., 33(3):21–22, 1999. doi:10.1145/347127.347405.

[GS91] B.K. Ghosh and P.K. Sen, editors. Handbook of Sequential Analysis. CRC,
1 edition, April 1991. ISBN 978-0824784089.

[GS07] Benjamin Grégoire and Jorge Luis Sacchini. Combining a verification
condition generator for a bytecode language with static analyses. In Gilles
Barthe and Cédric Fournet, editors, TGC, volume 4912 of Lecture Notes in
Computer Science, pages 23–40. Springer, 2007. ISBN 978-3-540-78662-7.
doi:10.1007/978-3-540-78663-4_4.

[GTW06] Benjamin Grégoire, Laurent Théry, and Benjamin Werner. A computational
approach to pocklington certificates in type theory. In FLOPS, pages 97–113,
2006. doi:10.1007/11737414_8.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969. doi:10.1145/363235.363259.

[INM84] INMOS Ltd. OCCAM Programming Manual. Prentice-Hall International,
1984.

[INR] INRIA. Coq prime project. Certifying Prime Numbers with the Coq prover.
Available from: http://coqprime.gforge.inria.fr/ [cited 2008.06.04].

[JGF96] Simon L. Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
haskell. In POPL, pages 295–308, 1996. Available from: ftp://ftp.
supelec.fr/lsi/pub/lambda/haskell/doc/concurrent-haskell.ps
[cited 2008-10-07], doi:10.1145/237721.237794.

70

http://link.springer.de/link/service/series/0558/bibs/2020/20200425.htm
http://link.springer.de/link/service/series/0558/bibs/2020/20200425.htm
http://dx.doi.org/10.1145/371880.371887
http://dx.doi.org/10.1145/1062261.1062280
http://www-sop.inria.fr/lemme/pcoq/
http://dx.doi.org/10.1145/347127.347405
http://dx.doi.org/10.1007/978-3-540-78663-4_4
http://dx.doi.org/10.1007/11737414_8
http://dx.doi.org/10.1145/363235.363259
http://coqprime.gforge.inria.fr/
ftp://ftp.supelec.fr/lsi/pub/lambda/haskell/doc/concurrent-haskell.ps
ftp://ftp.supelec.fr/lsi/pub/lambda/haskell/doc/concurrent-haskell.ps
http://dx.doi.org/10.1145/237721.237794

Bibliography

[JHM73] Jr. James H. Morris. Types are not sets. In POPL ’73: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 120–124, New York, NY, USA, 1973. ACM.
doi:10.1145/512927.512938.

[KMMS03] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P. Spinrad.
Certifying algorithms for recognizing interval graphs and permutation graphs.
In SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 158–167, Philadelphia, PA, USA, 2003. Society
for Industrial and Applied Mathematics. ISBN 0-89871-538-5.

[Kor01] Leif Kornstaedt. Alice in the land of Oz – an interoperability-based
implementation of a functional language on top of a relational language.
In Proceedings of the First Workshop on Multi-language Infrastructure
and Interoperability (BABEL’01), Electronic Notes in Computer Science,
volume 59, Firenze, Italy, September 2001. Elsevier Science Publishers.

[Kur30] C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fund.
Math., 15:271–283, 1930.

[KvRWH07] Cezary Kaliszyk, Femke van Raamsdonk, Freek Wiedijk, and Maxim
Hendriks. Proofweb - web interface for proof assistants, 2007. Available
from: http://www.cs.ru.nl/~cek/proofweb/ [cited 2008.05.26].

[LPS+03] James J. Leifer, Gilles Peskine, Peter Sewell, Keith Wansbrough, and
Inria Rocquencourt. Global abstraction-safe marshalling with hash types,
July 09 2003. Available from: http://www.sics.se/pepito/D3.3/papers/
leifer-globas.ps [cited 2007.12.05].

[MEK+05] Kurt Mehlhorn, Arno Eigenwillig, Kanela Kanegossi, Dieter Kratsch, Ross
McConnel, Uli Meyer, and Jeremy Spinrad. Certifying algorithms (a
paper under construction). Max-Planck-Institut für Informatik working
paper, 2005. Available from: http://www.mpi-inf.mpg.de/~mehlhorn/
ftp/CertifyingAlgorithms.pdf [cited 2007.04.24].

[Mye] Andrew Myers. Polyglot extensible compiler framework. Available from:
http://www.cs.cornell.edu/Projects/polyglot/ [cited 2008.09.05].

[NL96] George C. Necula and Peter Lee. Proof-carrying code, October 28
1996. Available from: http://citeseer.ist.psu.edu/50371.html;http:
//www.cs.cmu.edu/~necula/tr96-165.ps.gz [cited 2007.08.30].

[OAY05] Karen Osmond, Alex Ahern, and Nobuko Yoshida. Distributed java
project, 2005. Available from: http://dj-project.sourceforge.net
[cited 2008.09.05].

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
ISBN 0-262-16209-1.

71

http://dx.doi.org/10.1145/512927.512938
http://www.cs.ru.nl/~cek/proofweb/
http://www.sics.se/pepito/D3.3/papers/leifer-globas.ps
http://www.sics.se/pepito/D3.3/papers/leifer-globas.ps
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf
http://www.cs.cornell.edu/Projects/polyglot/
http://citeseer.ist.psu.edu/50371.html; http://www.cs.cmu.edu/~necula/tr96-165.ps.gz
http://citeseer.ist.psu.edu/50371.html; http://www.cs.cmu.edu/~necula/tr96-165.ps.gz
http://dj-project.sourceforge.net

Bibliography

[PMMR06] Gian Pietro Picco, Matteo Migliavacca, Amy L. Murphy, and Gruia-Catalin
Roman. Distributed abstract data types. In Robert Meersman and Zahir
Tari, editors, OTM Conferences (2), volume 4276 of Lecture Notes in
Computer Science, pages 1594–1612. Springer, 2006. ISBN 3-540-48274-1.
doi:10.1007/11914952_40.

[Poc16] H. C. Pocklington. The determination of the prime or composite nature
of large numbers by Fermat’s theorem. Proceedings of the Cambridge
Philosophical Society, 18:29–30, 1914-1916.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming
language based on the pi-calculus, March 19 1997. Available from:
http://citeseer.ist.psu.edu/26844.html;http://www.cs.indiana.
edu/pub/pierce/pict-design.ps.gz [cited 2007.08.30].

[Res07] Microsoft Research. F#: A succinct, type-inferred, expressive, efficient
functional and object-oriented language for the .net platform, 2007.
Available from: http://research.microsoft.com/fsharp/fsharp.aspx
[cited 2008.10.01].

[SH00] Christopher A. Stone and Robert Harper. Deciding type equivalence in a
language with singleton kinds. In ACM SIGPLAN–SIGACT Symposium
on Principles of Programming Languages (POPL), Boston, Massachusetts,
pages 214–227, January 2000.

[SLW+04a] Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams,
Francesco Zappa Nardelli, Pierre Habouzit, and Viktor Vafeiadis. Acute:
High-level programming language design for distributed computation. design
rationale and language definition. Technical Report UCAM-CL-TR-605,
University of Cambridge Computer Laboratory, October 2004. Also
published as INRIA RR-5329. 193pp. Available from: http://www.cl.
cam.ac.uk/TechReports/UCAM-CL-TR-605.html.

[SLW+04b] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli,
Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute
- high-level programming language design for distributed computation:
Design rationale and language definition. Technical report, University
of Cambridge and INRIA Rocquencourt, October 2004. Available from:
http://www.cl.cam.ac.uk/users/pes20/acute [cited 2007.01.04].

[SSvP07] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun. X10: concurrent
programming for modern architectures. In Katherine A. Yelick and
John M. Mellor-Crummey, editors, PPOPP, page 271. ACM, 2007. ISBN
978-1-59593-602-8. doi:10.1145/1229428.1229483.

[SW99] Peter Sewell and Pawel T. Wojciechowski. Nomadic pict: Language and
infrastructure design for mobile agents. October 1999. First International

72

http://dx.doi.org/10.1007/11914952_40
http://citeseer.ist.psu.edu/26844.html; http://www.cs.indiana.edu/pub/pierce/pict-design.ps.gz
http://citeseer.ist.psu.edu/26844.html; http://www.cs.indiana.edu/pub/pierce/pict-design.ps.gz
http://research.microsoft.com/fsharp/fsharp.aspx
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-605.html
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-605.html
http://www.cl.cam.ac.uk/users/pes20/acute
http://dx.doi.org/10.1145/1229428.1229483

Bibliography

Symposium on Agent Systems and Applications/Third International
Symposium on Mobile Agents.

[Tuc97] Allen B. Tucker, editor. Type Systems, chapter 103. CRC Press, Boca
Raton, FL, 1997. Available from: http://lucacardelli.name/Papers/
TypeSystems.pdf.

[U.S85] U.S. Department of Defense. Trusted computer systems evaluation criteria.
(Orange Book) 5200.28-STD, National Computer Security Center, Fort
Meade, MD, December 1985. Available from: http://nsi.org/Library/
Compsec/orangebo.txt [cited 2008.10.10].

[Woj00] Pawel T. Wojciechowski. Nomadic Pict: Language and Infrastructure
Design for Mobile Computation. PhD thesis, Wolfson College, University of
Cambridge, March 2000.

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model
for the Java system. Computing Systems, 9(4):265–290, Fall 1996.

[Zip08] Felipe Zipitŕıa. PCR extension to the acute source code, 2008.
Available from: http://www.fing.edu.uy/inco/grupos/gsi/sources/
acute-pcr/index.html [cited 2008.10.01].

73

http://lucacardelli.name/Papers/TypeSystems.pdf
http://lucacardelli.name/Papers/TypeSystems.pdf
http://nsi.org/Library/Compsec/orangebo.txt
http://nsi.org/Library/Compsec/orangebo.txt
http://www.fing.edu.uy/inco/grupos/gsi/sources/acute-pcr/index.html
http://www.fing.edu.uy/inco/grupos/gsi/sources/acute-pcr/index.html

Index

abstraction safety
Acute, 25

active adversaries, 20
Type safety, 21

Acute, 21
abstraction safety, 25
Certified results in, 41
Dynamic Rebinding, 23
features, 23
PCR Certificate checking, 50
Syntax, 22

calculus, 9
λ, 9
π, 9
ambient, 9

Case Study
Pocklington certificates, 54
Scenario, 53

Certifying algorithms, 30
Concepts, 31
Correct checkers, 35
examples, 31
PCR infrastructure, 35

Coloured brackets, 17

Distributed computations, 16

Marshaling, 19

PCR Infrastructure, 39
model, 40

Pocklington criteria, 32
programming languages, 7

Functional, 9
Proof Carrying Results, 26

Certificates, 28

Formalisation, 30
Necula’s labyrinth, 27
proof carrying code, 26
witnesses, 28

Type, 14
Abstraction, 15
Behaviour, 15
naming, 16
Safety, 14

74

A. Extension of Acute language

The Acute language, extended with PCR support, can be found in the following URL:http:
//www.fing.edu.uy/inco/grupos/gsi/sources/acute-pcr/.

There are two files listed there: the file called acute-pcr-src.tar.gz is the full source
code. To compile the Acute interpreter, simply follow the instructions for Acute
(README.distro-src). The other file, called acute-pcr-bin.tar.gz, has the full source
code and includes a binary code, compiled for Linux in a self-contained package.

Basically, Acute needs FreshOCaml to run correctly. Therefore, we packaged FreshOCaml
into a subdirectory of the distributed file.

Examples of the usage can be found in the ’demo’ subdirectory.
For simplifying some infrastructure details to the programmer, we extended the

command line syntax. The extended syntax is on Listing A.1

-coqc <filename >

pcr: Use <filename > as COQ compiler (default: /usr/bin/coqc)

-tcb <filename >

pcr: Use <filename > as TCB for coqc (default: none)

-prelude <filename >

pcr: Use <filename > as prelude for COQ compiler (default: none)

Listing A.1: Acute command line extended syntax

The new options include an option “-coqc“, which points to the path of the COQ
compiler. This is used only if it is not installed in the default place in unix (/usr/bin/coqc).
Option “-tcb“ refers to a file where are listed, one per line, the directories in the local
filesystem where trusted Tactics reside. In addition, option “-prelude“ is a file that
contains some default prelude for COQ.

Both files can be empty, but COQ will be limited only to tactics predefined (or no
tactic at all).

75

http://www.fing.edu.uy/inco/grupos/gsi/sources/acute-pcr/
http://www.fing.edu.uy/inco/grupos/gsi/sources/acute-pcr/

B. Glossary

Abstract data type A set of data values and associated operations that are precisely
specified independent of any particular implementation.

Abstraction safety defined operations on this type are the only means of interacting
with values of this particular type

Formal Verification A formal verifier shows that the code is not going to harm system
resources by using provable, mathematical logic.??

Functional programming Is a paradigm that treats computation as the evaluation of
mathematical functions

Marshalling is the process of gathering data and transforming it into a standard format

Proof assistant an interactive computerised helper for developing machine proofs

Proof Carrying Results a host consumer sends an untrusted part some computation to
be done remotely. The untrusted part then returns the result of this computation,
with a certificate that the computation has been done in a correct way.

Trusted Computing Base is everything in a computing system that provides a secure
environment

Unmarshalling is the marshalling reverse process, which transforms back data from
standard format to its original form.

76

C. Demo source code

This appendix contains the source code presented in the demo. It is written here for the
mere purpose of completing it when the demo is fully extended.

C.1. Demo examples

This example show the creation and pushing of a prime number to a host. This number
comes equipped with a COQ proof that the receiver will use to certify the number as
prime.

C.1.1. Prime number generator

The prime numbers are generated using the pocklington program, alogn with its certificate.

C.1.2. Sender example

Generate and send a prime, with its corresponding proof.

(∗ Prime module ∗)
i n c l ude sou r c e ”prime . ac ”
in c l ude sou r c e ” c e r t i f i e d −prime . ac ”

(∗ c e r t i f i c a t e i s in c e r t i f i e d −prime . ac ∗)

(∗ Generate a prime number to be sen t to A l i ce ∗)
l et p = Prime . generate (Prime . i n i t) in

IO . send (marshal ”StdLib ” p
(”prime ” , c e r t i f i c a t e) ; ;

Listing C.1: Sender’s code

C.1.3. Receiver example

Receives and verifies the prime number.

(∗ Prime module ∗)
i n c l ude sou r c e ”prime . ac ”

(∗ Al ice j u s t r e c e i v e a prime number ∗)

77

C. Demo source code

l et p = (unmarshal (IO . r e c e i v e ()) : Prime . t)
in
Pervas ive s . p r i n t e nd l i n e ”Prime number i s : ” ;
Prime . pr in t pr ime p ;
Pervas ive s . p r i n t new l i n e () ; ;

Listing C.2: Receiver’s code

78

D. Acute Syntax

The Acute Technical Report includes this appendix which gives most of the Acute syntax.
We show it here for reference. This is the fully type-annotated source language, including
sugared forms, together with other non-source constructs that are needed to express the
semantics. The implementation can infer many of the type annotations, and the mode,
withspec, likespec, vce, vne, and resolvespec annotations on module and import default
to reasonable values if omitted. The internal parts M , t and x of identifiers MM , tt and
xx are inferred by scope resolution.
Abstract names n Store locations l
Standard library constants (with arity) xn

Kinds

K ::= TY PE |EQ(T)

Types

T ::= int |bool | string |unit | char |void |T1 ∗ · · · ∗ Tn |T1 + · · ·+ Tn |T → T ′ |
T list |T option |T ref | exn |MM .t | t | ∀t.T | ∃t.T |T name | |T tie |
thread |mutex | cvar | thunkifymode | thunkkey | thunklet | h.t |n

Constructors

C0 ::= . . .

C1 ::= ...

Operators

op ::= refT | (=T) | (<) | (≤) | (>) | (≥) | mod | land | lor | lxor | lsl |lsr |asr
(+) | (−) | (∗) | (/) | − |@T | (̂) | create threadT | self | kill | lock | try lock |
unlock | create cvar |wait | signal |broadcast | exitT|
compare nameT | thunkify |unthunkify

Expressions

79

D. Acute Syntax

e ::= C0 |C1 e | e1 :: e2 | (e1, .., en) | functionmtch| funmtch | l | opn e1...en|
xn e1 . . . en |x |MM .x | if e1 then e2 else e3 |while e1 do e2 done |
e1 && e2| e1 || e2| e1 ; e2| e1 e2| e1 && e2| !T e | e1 :=T e2|match ewithmtch |
let p = e1 in e2 | letx : T p1..pn = e | let recx : T = functionmtch in e |
let recx : T p1..pn = e1 in e2| raise e | try ewithmtch |Λ t → e | e T |
{T, e}asT1 | let {t, x} = e1ine2|marshal e1 e2 : T |unmarshal easT |
freshT| cfreshT |hash(X.x)T |hash(T, e2)T |hash(T, e1, e2)T | swap e1 and e2 in e3 |
e1 freshfor e2 | supportT |MM@x |nameoftie e |valoftie e |
namecase ewith t, (x1, x2)whenx1 = e → e2 otherwise → e3| e1||| e2|
nT |h.x | e1 :=

′
T e2 |marshalz s e : T |RETT |SLOWRETT |TERM |

op(opn)n e1...en|op(xn)n e1...en | [e]Teqs | resolve(MM .x, M ′
M ′ , resolvespec) |

resolveblocked(MM .x, M ′
M ′ , resolvespec)

Matches and Patterns

mtch ::= p → e | (p → e |mtch)
p ::= (: T) | (x : T) |C0 |C1 p | p1 :: p2 | (p1, . . . , pn) | (p : T)

Signatures and Structures

sig ::= empty |valxx : T sig | type tt : K sig

Sig ::= sig sig end

str ::= empty | letxx : T p1, . . . , pn = e str | type tt = T str

Str ::= struct str end

Version and version constraint expressions

avne ::= n |N |h |mynameb avce ::= ahvce |n
vne ::= avne | avne.vne dvce ::= avce |n− n′ | − n |n− | ∗ | avce.dvce

ahvce ::= N |h |MM vce ::= dvce |name = ahvce

Source definitions and Compilation Units

80

D. Acute Syntax

sourcedefinition ::= modulemode MM : Sig version vne = Str.withspec

importmode MM : Sig version vce likespecby resolvespec = Mo

markMK

moduleMM : Sig = M ′
M ′

mode ::= hash | cfresh | fresh |hash! | cfresh!
withspec ::= empty |with !eqs
likespec ::= empty | likeMM | likeStr

resolvespec ::= empty |STATICLINK, resolvespec |HereAlready, resolvespec |
URI, resolvespec

M0 ::= MM |UNLINKED

compilationunit ::= empty | e | sourcedefinition ; ; compilationunit |
includesource sourcefilename ; ; compilationunit |
includecompiled compiledfilename ; ; compilationunit

Compiled Definitions and Compiled Units

definition ::= cmodule . . . | cimport . . . |module fresh . . . | import fresh . . . |
markMK

compiledunit ::= empty | e | definition ; ; compiledunit |

Marshalled value contents (marshalled values are strings that unmarshal to these)

mv ::= marshalled(En, Es, s, definitions, e, T)

Module names (hashes and abstract names)

h ::= hash(hmoduleeqs M : Sig version vne = Str) |
hash(himportM : Sig0 version vc likeStr |n

X ::= Mm |h

Expression name values

n ::= nT |hash(h.x)T |hash(T ′.s)T |hash(T ′, s,n)T

81

D. Acute Syntax

(In the implementation all h and n forms can be represented by a long bitstring taken
from H, ranged over by N .)

Type equation sets (the MM forms occur in the source language)

eqs ::= Ø | eqs, X.t ≈ T

Type Environments (for identifiers and store locations — not required at run-time in
the implementation)

E ::= empty |E, x : T |E, l : T ref |E, t : K |E,MM : Sig

Type Environments (for global names — not required in the implementation)

En ::= empty |En, n : nmoduleeqsM : Sig0 version vne = Str |
En, n : nimportM : Sig0version vc likeStr |
En, n : TYPE |En, n : T name

Processes

P ::= 0 | (P1|P2) |n : definitions e |n : MX(b) |n : CV

Single-Machine Configurations

config ::= En ; 〈Es, s, definitions, P 〉

82

	Introduction
	Motivation
	Description
	Contribution
	Methodology
	Organisation

	Type-safe Distributed Computations
	A review of type and abstraction safety
	Types
	Type-Safety
	Behaviour
	Abstraction safety

	Concepts of distributed computations
	Type naming
	Coloured brackets
	Marshalling
	Exchanging data between hosts: to trust or not to trust
	Type safety with active adversaries

	A distributed language: Acute
	Syntax and Semantics
	Features of Acute
	Type-safe distributed interaction
	Dynamic rebinding
	Concurrency
	Versions

	Acute and abstraction safety

	Proof Carrying Results
	Introduction
	Proof carrying results
	Certifying algorithms` 12`12`$12`&12`#12`12`_12`%12`12Certifying algorithmsAn algorithm or program is certifying when, along with the result it was supposed to give, returns a certificate or proof that this result indeed is the correct for the given input.
	Result certification examples
	Correct checkers
	Towards a PCR infrastructure

	A PCR Infrastructure for ADT values
	Abstraction-safety and PCR
	Motivation
	A Protocol for PCR distributed computations

	A PCR Infrastructure
	Primitives for distributed computation
	Infrastructure model

	Implementing the infrastructure in Acute
	Certified result communication in Acute
	Acute instantiation of the protocol

	Extension of the Acute language
	Overview
	In depht modifications
	Certificate checking

	Case Study: Certified Prime Computation
	Scenario
	Pocklington certificates
	Simple test case
	Towards a distributed certifying infrastructure
	Extending the protocol
	Protocol example with prime numbers

	Conclusions, related and further work
	Conclusions
	Future work
	Related Work

	Extension of Acute language
	Glossary
	Demo source code
	Demo examples
	Prime number generator
	Sender example
	Receiver example

	Acute Syntax

