Traditional {OLAP} tools have proven to be successful in analyzing large sets of enterprise data. For today’s business dynamics, sometimes these highly curated data is not enough. External data (particularly web data), may be useful to enhance local analysis. In this paper we discuss the extraction of multidimensional data from web sources, and their representation in {RDFS.} We introduce Open Cubes, an {RDFS} vocabulary for the specification and publication of multidimensional cubes on the Semantic Web, and show how classical {OLAP} operations can be implemented over Open Cubes using {SPARQL} 1.1, without the need of mapping the multidimensional information to the local database (the usual approach to multidimensional analysis of Semantic Web data). We show that our approach is plausible for the data sizes that can usually be retrieved to enhance local data repositories.
Enhancing {OLAP} Analysis with Web Cubes
Tipo
              Capítulo de libro
          Año
              2012
          Publisher
              Springer Berlin Heidelberg
          ISBN
              978-3-642-30283-1, 978-3-642-30284-8
          Páginas
              469
          Número
              7295
          Tertiary title
              Lecture Notes in Computer Science
          Abstract
               Valentina Presutti
      
       Elena Simperl
      
       Lorena Etcheverry
      
       Oscar Corcho
      
       Alejandro Vaisman
      
       Philipp Cimiano
      
       Axel Polleres
      
      Citekey
              etcheverry_enhancing_2012
          URL a la publicación
              
          Keywords
          Artificial Intelligence (incl. Robotics)
          Computer Communication Networks
          Database Management
          Information Systems and Communication Service
          Information Systems Applications (incl. Internet)
          User Interfaces and Human Computer Interaction
              