Vera+ publicó la conferencia que el Prof. Hervé This, padre de la gastronomía molecular, brindó en nuestra Facultad el pasado 20 de marzo de 2017, titulada “Resultados      recientes en gastronomía molecular y  aplicaciones en la comida del futuro      (note by note cooking)”.
El Prof. This es fisicoquímico titulado de la École Supérieure de Physique et de Chimie de Paris. Junto al Físico británico Nicholas Kurti, concibió el término de “gastronomía molecular” para definir las transformaciones moleculares de los componentes de los alimentos mediante técnicas culinarias, lo que lo ha llevado a ser reconocido mundialmente. También se desempaña como director del AgroParisTech-Inra International Centre for Molecular Gastronomy y es Jefe del Inra Group of Molecular Gastronomy in the Laboratory of Analytical Chemistry of AgroParisTech, entre otros cargos.
Resumen de la Conferencia: “Resultados      recientes en gastronomía molecular y aplicaciones en la comida del futuro      (note by note cooking)”
Food can be described at      various  scales (from the molecular level to the macroscopic scale) using a       formalism taking into consideration the nature of phases as well as  their      relative topological arrangement (This, 2009). It  can change during processing such as      in the culinary practice  (Aguilera, 2012). The Disperse System Formalism      (DSF) scheme (This,  2007) can apply to any scale, according to their      “degree of  complexity”. For example, custard which is made of oil droplets      O  (from milk), air bubbles G (introduced during the initial whipping of       sugar and egg yolks) and small solid particles S (due to egg  coagulation      during thermal processing) all dispersed in an aqueous  phase (W), may be      described as [D0(O) + D0(G) + D0(S)]/D3(W). When  applied to French      classical sauces compiled from culinary books, 23  categories of products      were found. For the “solid content” of  food, it was recognized that it is      primarily made of gels (This,  2012), i.e. colloidal systems made of a      liquid phase in a solid  phase. However the same word "gel"      applies traditionally to very  different systems, either non connected such      as plant tissues  (assuming the cytosol is a liquid), or connected, such as      jams.  Using the DSF, all kinds of gels could be recognized, and in       particular new dynamic gels, called dynagels. Their original  bioactivities      can now be explored, making the basis of a new way of  preparing food      structured at any scale: “note by note cooking”. 

