Pasar al contenido principal

Análisis teórico de la ecuación KdV con coeficientes dependientes del tiempo.

Fecha de inicio
Fecha de fin

Resumen: Desde mediados del siglo XIX ha surgido un enorme y creciente interés por parte de matemáticos y físicos por estudiar las soluciones más simples para un modelo dispersivo, dichas soluciones son conocidas hoy como ondas viajeras. Las ondas viajeras existen como consecuencia de un equilibrio entre los efectos dispersivos y no lineales presentes en un sistema; estas ondas viajan con una velocidad constante, sin ninguna evolución temporal en forma o tamaño cuando el marco de referencia se mueve con la misma velocidad de la onda. Las investigaciones han demostrado que este tipo de soluciones especiales aparecen en diversos campos, como la mecánica de fluidos, la acústica, la óptica, la oceanografía, entre otros. 

La ecuación Korteweg de Vries (KdV) es un modelo matemático encargado de describir el comportamiento de las ondas viajeras. Esta ecuación es una de las ecuaciones diferenciales parciales dispersivas cuasilineales más conocidas. La relevancia de este modelo se debe, no solo, a la teoría matemática que involucra su estudio y el número de problemas abiertos asociados que aún persisten, sino a lo sugestiva que resulta a la hora de abordar problemas relacionados.

Un problema resultante del estudio de la ecuación KdV es considerar el caso donde sus coeficientes sean variables, dicho problema es consecuencia de considerar un fondo variable del canal. Otro camino para llegar a este problema es tener en cuenta la tensión superficial a la hora de deducir el modelo, ya que los coeficientes de la ecuación diferencial parcial (edp) dependen de la altura, la densidad del fluido y la tensión superficial. El propósito de la charla es enseñar un análisis teórico sobre la existencia y unicidad de soluciones para el problema de Cauchy asociado a la ecuación KdV con coeficientes dependientes del tiempo.


Viernes 17/5 a las 12:30
Salón 101 IMERL